期刊文献+

复杂应力状态下岩土体的非共轴塑性流动理论 被引量:23

NON-COAXIAL PLASTIC FLOW THEORY IN MULTI-DIMENSIONAL STRESS STATE
下载PDF
导出
摘要 由于传统的弹塑性本构模型是基于二维或三维的共轴应力空间和正交流动法则得到的,从而隐含了应力主方向和塑性应变率主方向共轴的局限性,由此引入非共轴塑性流动理论描述岩土体的本构特性。基于三维共轴应力空间定义多维应力状态下的非共轴应变率,进而建立非共轴本构理论框架。理论分析表明,J.W.Rudnicki和J.R.Rice早期定义的非共轴塑性应变率是基于二维共轴应力空间得到的,由于忽略第三应力不变量的影响,在多维应力空间并不能保证其非共轴性。应力探测试验表明,在多维应力空间伴随着主应力的旋转将产生非共轴塑性应变,而在真三维应力状态下没有非共轴塑性应变产生,这与大量试验观察到的岩土体本构现象是一致的。 A classical elastoplastic constitutive model is generally defined in a 2D or 3D coaxial stress space and has a postulate of normal plastic flow rule. As a result, the classical elastoplastic constitutive relation implicates an inevitable limitation that directions for principal stress and that for principal plastic rate of deformation are always coaxial. Therefore, a non-coaxial constitutive model is indispensable in order to offer an insight into the behaviour of rocks and soils. In this paper, a non-coaxial plastic strain rate is defined; and a framework of non-coaxial model is built based on 3D coaxial stress space. The analysis finds that the classical non-coaxial stress rate, proposed by J. W. Rundnicki and J. R. Rice, is only built on the basis of 2D coaxial stress space but invalid in multi-dimensional stress space since the effect of the third stress invariant on non-coaxiality is ignored. The stress-probe test in multi-dimensional stress space shows that an incremental nonlinear response can almost be observed as the rotation of principal stresses, whilst no non-coaxial plastic strain exists in a true triaxial state. The probe results exhibit a coincident constitutive response with a lot of experimental observations.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2006年第6期1259-1264,共6页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(10402029) 中国科学院岩土力学重点实验室资助课题(Z110401) 同济大学工科科技发展基金资助项目
关键词 岩土力学 共轴 非共轴 多维应力空间 应力探测试验 rock and soil mechanics coaxiality non-coaxiality multi-dimensional stress space stress-probe test
  • 相关文献

参考文献12

  • 1Arthur J R F,Chua K S,Dunstan T.Induced anisotropy in sand[J].Geotechnique,1977,27(1):613-82.
  • 2Ishihara K,Towhata I.Sand response to cyclic rotation of principal stress directions as induced by wave loads[J].Soils and Foundations,1983,23(4):11-26.
  • 3Matsuoka H,Sakakibara K.A Constitutive model for sands and clays evaluating principal stress rotation[J].Soils and Foundations,1987,27(4):73-88.
  • 4Pradel D,Ishihara K M.Yielding and flow of sand under principal axes rotation[J].Soils and Foundations,1990,30(1):87-89.
  • 5Gutierrez M,Ishihara K,Towhata I.Flow theory for sand during rotation of principal stress direction[J].Soils and Foundations,1991,31(4):121-132.
  • 6Vardoulakis I,Graf B.Calibration of constitutive models for granular materials using data from biaxial experiments[J].Geotechnique,1985,35(3):299-317.
  • 7Papamichos E,Vardoulakis I.Shear band formation in sand according to non-coaxial plasticity model[J].Geotechnique,1995,45(4):649-661.
  • 8钱建固,黄茂松.土体变形分叉的非共轴理论[J].岩土工程学报,2004,26(6):777-781. 被引量:16
  • 9Rudnicki J W,Rice J R.Conditions for the localization of the deformation in pressure sensitive dilatant materials[J].J.Mech.Phys.Solids,1975,23:371-394.
  • 10Chen W F,Saleeb A F.Constitutive Equations for Engineering Materials[M].Elsevier,Amsterdam:[s.n.],1994.106

二级参考文献17

  • 1Mandel J. Conditions de stabilite et postulate de drucker [A]. IUTAM symposium on rheoretical and applied mechanics [C]. Grenoble, 1964, 58-68.
  • 2Hill R. A general theory of uniqueness and stability in elastic- plastic solids [J]. J Mech Phys Solids. 1958, 6: 236-249.
  • 3Hill R. Acceleration waves in solids [J]. J Mech Phys Solids. 1962, 10: 1-6.
  • 4Rudnicki J W, Rice J R. Conditions for the localization of the deformation in pressure sensitive dilatant materials [J]. J Mech Phys Solids, 1975, 23: 371-394.
  • 5Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests [J]. Int J Num Analyt Meth Geomechanics, 1980, 4: 103-119.
  • 6Balasubramanian A S, Chaudhry A R. Deformation and strength characteristics of soft Bangkok Clay [J]. Journal of Geotechnical Engineering Division, 1978, GT9.
  • 7Smith P R, Jardine R J, Hight D W. The yielding of Bothkennar clay [J]. Geotechnique, 1992, 42(2): 257-274.
  • 8Anandarajah A, Khaled S, Kuganenthira N. Incremental stress-strain behavior of granular soil [J]. ASCE Journal of Geotechnical Engineering, 1995, 121(1): 57-68.
  • 9Oda M, Konishi J. Rotation of principal stresses in granular material during simple shear [J]. Soils and Foundations, 1974, 14: 39-53.
  • 10Pradel D, Ishihara K, Gutierrez M. Yielding and flow of sand under principal axes rotation [J]. Soils and Foundations, 1990, 30(1): 87-89.

共引文献15

同被引文献195

引证文献23

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部