期刊文献+

用近红外光谱鉴别杨梅品种的研究 被引量:65

DISCRIMINATING VARIETIES OF WAXBERRY USING NEAR INFRARED SPECTRA
下载PDF
导出
摘要 提出了一种用近红外光谱技术快速无损鉴别杨梅品种的新方法,首先用主成分分析法对典型的四个杨梅品种进行聚类分析,获取杨梅的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别.主成分分析表明,以主成分1和2对样本的得分值做出的得分图,对不同种类杨梅具有较好的聚类作用,可以定性分析杨梅种类.利用主成分分析可以把原始波长变量压缩成能代表原始变量的少数相互正交的主成分,用这些新变量作为神经网络的输入,建立3层BP人工神经网络模型.四个杨梅品种共100个样本用来建立神经网络品种鉴别模型,对未知的20个样本进行预测,结果表明,品种识别准确率达到95%.说明综合主成分分析和人工神经网络的方法具有很好的分类和鉴别作用,为杨梅的品种鉴别提供了一种新方法. A new nondestructive method for discriminating varieties of waxberry by visible and near infrared spectroscopy (Vis/NIRS) was developed. First, the spectral data were analyzed by principal component analysis (PCA) for varieties clustering. Then diagnostic information was obtained from original spectra, these informations were used for pattern recognition based on ANN model. The score plot provided the reasonable clustering of the varieties of waxberry. Small quantities of principal components from PCA were used as inputs of a back propagation neural network (BPNN) with one hidden layer. 100 samples were selected randomly from four varieties, then they were used to build BPNN model. This model had been used to predict the varieties of 20 unknown samples. The recognition rate of 95% was achieved. This model is reliable and practicable. So this method could offer a new approach to the fast discriminating varieties of waxberry.
作者 何勇 李晓丽
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2006年第3期192-194,212,共4页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金项目(30270773) 教育部高等学校优秀青年教师教学科研奖励计划(02411)
关键词 近红外光谱 杨梅 主成分分析 人工神经网络 聚类 near infrared spectra waxberry principal component analysis artificial neural network clustering
  • 相关文献

参考文献7

  • 1Esteban-Diez I, Gonzalez-Saiz J M, Pizarro C. An evaluation of orthogonal signal correction methods for the charactefisation of arabica and robusta coffee varieties by NIRS[J]. Analytica. Chimica. Acta, 2004,514(1):57-67.
  • 2Haluk Utku. Application of the feature selection method to discriminate digitized wheat varieties [J]. Journal of Food Engineering, 1999,46(3): 211-216.
  • 3HE Yong, LI Xiao-Li, SHAO Yong-Ni. Quantitative analysis of the varieties of apple using near infrared spectroscopy by principal component analysis and BP model [J]. Lecture Notes in Artificial Intelligence, 2005,3809: 1053-1056.
  • 4孙素琴,汤俊明,袁子民,白雁.道地山药红外指纹图谱和聚类分析的鉴别研究[J].光谱学与光谱分析,2003,23(2):258-261. 被引量:62
  • 5尹球,疏小舟,徐兆安,匡定波.湖泊水环境指标的超光谱响应特征分析[J].红外与毫米波学报,2004,23(6):427-430. 被引量:32
  • 6HE Yong, ZHANG Yun, XIANG Li-Guo. Study of application model on BP neural network optimized by fuzzy clustering [J]. Lecture Notes in Artificial Intelligence, 2005,3789: 712-720.
  • 7林三虎,朱红,赵亦工.基于神经网络的海杂波模型[J].红外与毫米波学报,2004,23(1):55-58. 被引量:15

二级参考文献14

  • 1Xiao Bo Li, Simon Haykin. Detection of signal in chaos[J]. Proceedings of IEEE,1995, 83(1): 95-122
  • 2Leung H, Haykin S. Is there a radar clutter attractor[J]. Appl. Phys. Lett.,1990, 56(6): 592-595
  • 3Nan He, Simon Haykin. Chaotic modeling of sea clutter[J]. Electronics Letters, 1992, 28(22): 2076-2077
  • 4Abarbanel H D I, Frision T W, Tsimring L S. Obtaining order in a world of chaos[J]. IEEE Signal Processing Magazine, 1998, 15(3): 49-65
  • 5Fraser Andrew M, Swinney Harry L. Independent coordinates for strange attractors[J]. Physical Review A, 1986, 33(2): 1134-1140
  • 6Kennel M B, Brown R, Abarbanel H D J. Determinning embeding dimension for phase-space reconstruction using a geometrical construction[J]. Phys. Rev. A, 1992, 45(6): 3403-3411
  • 7Abarbanel H D I, Kennel M B. Local false nearest neighbors and dynamical dimensions from observed chaotic data[J]. Phys. Rev. E, 1993, 47(5): 3057-3068
  • 8Haykin S. Radar clutter attractor: implications for physics, signal processing and control[J]. IEEE Proc. -Radar, Sonar Navig, 1999, 146(4): 177-188
  • 9Cowper M R, Mulgrew B, Unsworth C P. Investigation into the use of nonlinear predictor networks to improve the performance of maritime surveillance radar target detectors[J]. IEEE Proc. -Radar Sonar Navig., 2001, 148(3): 103-111
  • 10GB 3838-2002.地表水环境质量标准[S],2002.

共引文献100

同被引文献781

引证文献65

二级引证文献836

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部