期刊文献+

逼近一致凸Banach空间中渐近非扩张映象的不动点 被引量:2

Approximating to fixed points of asymptotically nonexpansive mappings in uniformly convex Banach spaces
下载PDF
导出
摘要 借助于B ruck′s不等式,研究了一致凸Banach空间中渐近非扩张映象不动点的具误差的Ish ikaw a迭代序列的强收敛定理.所得的结果推广和改进了Schu,Rhoades,周海云,王绍荣等作者的相应结果. In the present paper, by virtue of Bruck's inequality, the convergence theorem for the Ishikawa iterative sequences with errors for asymptotically nonexpansive mappings in uniformly convex Banach spaces are proved. The results presented in t his paper improve and prefect the corresponding results announced by Schu, Rhoades, Zhou Haiyun, Wang Shaorong and others.
出处 《纯粹数学与应用数学》 CSCD 北大核心 2006年第2期263-270,278,共9页 Pure and Applied Mathematics
关键词 不动点 渐近非扩张映象 一致凸BANACH空间 具误差的Ishikawa fixed point, asymptotically nonexpansive mappings, uniformly convex Banach spaces, the Ishikawa iterative sequences with errors
  • 相关文献

参考文献2

二级参考文献19

  • 1[1]Goebel K, Kirk W A. A fixed point theorem for asymptotically non-expansive mappings[J]. Proc Amer Math Soc, 1972, 35: 171-174.
  • 2[2]Schu J. Iterative construction of fixed points of asymptotically nonexpansive mappings[J]. J Math Anal Appl, 1991, 158: 407-413.
  • 3[3]Schu J. Weak and strong convergence of fixed points of asymptotically nonexpansive mappings[J]. Bull Austral Math Soc, 1991, 43: 153-159.
  • 4[4]Tan K K, Xu H K. Fixed point iteration processes for asymptotically nonexpansive mappings[J]. Proc Amer Math Sco, 1994, 122: 733-739.
  • 5[5]Xu H K. Inequalities in Banach spaces with applications[J]. Nonlinear Anal, 1991, 16: 1127-1138.
  • 6[6]Rhoades B E. Fixed point iterations for certain nonlinear mappings[J]. J Math Anal Appl, 1994, 183:118-120.
  • 7[7]Liu Q H, Xue L X. Convergence theorems of iterative sequences for asymptotically nonexpansive mapping in a uniformly convex Banach space[J]. J Math Res and Exp, 2000, 20: 331-336.
  • 8[8]Tan K K, Xu H K. Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process[J]. J Math Anal Appl, 1993, 178: 301-308.
  • 9[9]Bruek R E. A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces[J].Israel J Math, 1979, 32: 107-116.
  • 10[10]Senter H F, Dotson W G, Jr. Approximating fixed points of non-expansive mappings[J]. Proc Amer Math Sco, 1974, 44: 375-380.

共引文献3

同被引文献24

  • 1李国祯.随机1-集压缩算子的随机不动点指数和随机不动点定理[J].应用数学学报,1996,19(2):203-212. 被引量:47
  • 2张石生,李向荣,陈志坚.Hilbert空间中非扩张映象的最近的公共不动点的逼近问题[J].数学学报(中文版),2006,49(6):1297-1302. 被引量:2
  • 3李国祯,许绍元.关于随机非线性算子的若干定理[J].数学进展,2006,35(6):721-729. 被引量:9
  • 4Zhu Chuanxi,Chen Chunfang.Calculations of random fixed point index[J].J.Math.Anal.Appl.,2008,339:839-844.
  • 5Li Guozhen.The existence theorems of the random solutions for random Hammerstein equation with random kernel[J].Applied Mathematics Letters,2002,15(1):121-12.
  • 6Zhu Chuanxi.Generalizations of Krasnoselskii's theorem and Petryshyn's theorem[J].Applied Mathematics Letters,2006,19:628-632.
  • 7Geobel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings[J]. Proc. Amer. Math. Soc., 1972,35(1):171-174.
  • 8Shimizu T, Takahashi W. Strong convergence to common fixed points of families of nonexpansive mappings[J]. J. Math. Anal. Appl., 1997,211:71-83.
  • 9Shioji N, Takahashi W. Strong convergence theorems for continuous semigroups in Banach spaces[J]. Math. Japonica, 1999,1:57-66.
  • 10Shioji N, Takahashi W. Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces[J], nonlinear Anal., 1998,34:87-99.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部