期刊文献+

基于边界检测的三维散乱点快速曲面重建算法 被引量:1

A fast surface reconstruction algorithm based on border-estimation for 3D unorganized points
下载PDF
导出
摘要 针对Power Crust算法提出一种带边界检测的不均匀降采样算法。曲面重建前先通过该算法减少参与运算的采样点,表面特征丰富的区域削减的采样点数远小于特征不丰富的区域,再进行曲面重建。通过实例表明该算法大大加快了散乱点数据的重建速度,而且很好地保持了模型表面的特征,能够较为真实地重建出曲面模型。 A fast surface reconstruction algorithm based on Power Crust algorithm was proposed for 3D unorganized points. Power Crust algorithm can reconstruct good mesh but its running time is long. A non-unlform down sampling method with border-estimation was proposed to resample the input data set according to local feature before reconstruction. Some instances indicate that this algorithm greatly promots the speed of using scatter data points to finish surface reconstruction, and really reconstructs surface model.
出处 《计算机应用》 CSCD 北大核心 2006年第7期1580-1582,共3页 journal of Computer Applications
关键词 散乱点 曲面重建 降采样 unorganized point surface reconstruction down sampling
  • 相关文献

参考文献7

  • 1AMENTA N, BERN M. Surface reconstruction by Voronoi filtering[J]. Discrete & Computational Geometry, 1999, 22(4) : 481 -504.
  • 2AMENTA N, CHOI S, DEY TK, et al. A simple algorithm for homeomorphic surface reconstruction[ J]. International Journal of Computational Geometry & Application, 2002,12(1/2) : 125 - 141.
  • 3AMENTA N, CHOI S, KOLLURI RK. The Power Crust, unions of balls, and the medial axis transform[ J]. Computational Geometry:Theory and Applications, 2001,19(2) : 127 - 153.
  • 4高山,卢汉清,周万宁.散乱点的快速曲面重建方法[J].中国图象图形学报(A辑),2002,7(12):1329-1333. 被引量:7
  • 5DEY T, GOSWANI S. Tight Cocone: A watertight surface reconstructor[ A]. Proceedings of 8th ACM Symposium on Solid Modeling Applications[ C].2003. 127 - 134.
  • 6杨长春,倪彤光.一种高效的混合曲面光顺算法[J].计算机应用,2005,25(11):2609-2611. 被引量:4
  • 7http://www.geomview.org[EB/OL],2005.

二级参考文献8

  • 1Guo-FeiHu,Qun-ShengPeng,A.R.Forrest.Robust Mesh Smoothing[J].Journal of Computer Science & Technology,2004,19(4):521-528. 被引量:6
  • 2[1]Hoppe H. Surface reconstruction from unorganized points[D]. Washington: Computer Science and Engineering, University of Washington, 1994.
  • 3[2]Hoppe H, DeRose T, Duchamp T et al. Surface reconstruction from unorganized points[A], In: Proceeding of SIGGRAPH'92 [C], Chicago: ACM press, 1992:71~78.
  • 4[3]Edelsbrunner H, Mtcke E P. Three-Dimensional alpha shapes [J], ACM Transactions on Graphics, 1994,13(1): 43~72.
  • 5[4]Amenta N, Bern M, Kamvysselis M. A new voronoi-based surface reconstruction algorithm [A ]. In: Proceeding of SIGGRAPH'98[C], Orlando, ACM press, 1998: 415 ~ 420.
  • 6[5]Amenta N, Bern M, Eppstein D. The crus t and the β-skeleton:Combinatorial curve reconstruction[J]. Graphical Models andImage Processing, 1998,60(2) : 125~ 135.
  • 7[6]Amenta N, Bern M. Surface reconstruction by voronoi filtering [J]. Discrete and Computational Geometry, 1999,22(4): 481~ 504.
  • 8[7]Barber C B, Huhdanpaa H T. Manual for Qhull and rbox[CP]. http://www. geom. umn. edu/locate/qhull/manual, 2001-05- 10.

共引文献9

同被引文献13

  • 1AMENTA N, BERN M. Surface reconstruction by Voronoi filtering [ J]. Discrete and Computational Geometry, 1999, 22 (4) : 481 - 504.
  • 2AMENTA N, CHOI S, KOLLURI R K. The power crust [ C]// Proceedings of the 6th ACM Symposium on Solid Modeling and Ap- plications. New York: ACM, 2001:249-266.
  • 3AMENTA N, CHOI S, DEY T K, et al. A simple algorithm for ho- meomorphic surface reconstruction [ C]// Proceedings of the 16th Annum Symposium on Computational Geometry. New York: ACM, 2000:213 -222.
  • 4DEY T K, GIESEN J. Detecting undersarnpling in surface recon- struction [ C]//Proceedings of the 17th Annual Symposium on Com- putational Geometry. New York: ACM, 2001:257-263.
  • 5DEY T K, GOSWAMI S. Tight cocone: a water-tight surface recon- structor [ C]// Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. New York: ACM, 2003:127 - 134.
  • 6DEY T K, GOSWAMI S. Provable surface reconstruction from noisy samples [ C]//Proceedings of the 20th Annual Symposium on Com- putational Geometry. New York: ACM, 2004:330 - 339.
  • 7DEY T K, WANG L. SMI 2013: Voronoi-based feature curves ex- traction for sampled singular surfaces [ J]. Computers and Graphics, 2013,37(6):659 -668.
  • 8DEY T K. Curve and surface reconstruction: algorithms with math- ematical analysis [ M]. Cambridge: Cambridge University Press, 2007:14 - 16.
  • 9AMENTA N, BERN M, KAMVYSSELIS M, A new Voronoi-based surface reconstruction algorithm [ C]//Proceedings of the 25th An- nual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1998:415-421.
  • 10DEY T K, SUN J. Normal and feature approximations from noisy point clouds [ C]// Proceedings of the 26th International Confer- ence on Foundations of Software Technology and Theoretical Com- puter Science. Berlin: Springer-Verlag, 2006:21 -32.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部