期刊文献+

中值滤波方法在燃气涡轮传感器数据校正中的应用研究 被引量:2

Application of Median Filter in Gas Turbine Sensor Data Validation
下载PDF
导出
摘要 分析了发动机测量信号滤波需求,设计了针对传感器数据校正的中值滤波器和快速算法,给出了模拟发动机故障和变工况试验情况下的传感器输出,给出了滤波比较研究结果。数值实验和实际应用于涡轮试验测量数据滤波的结果表明,中值滤波器对于脉冲噪声可以完全剔除,对随机噪声也具有较好的抑制效果,并能够较好保持信号中的陡峭边沿等趋势成份。 The filtering requirements of engine measurement signals are analyzed. A center weighted median filter and fast algorithm for sensor data validation are presented, and the filtering function and algorithmic efficiency are evaluated with numerical experiments. The simulated test signals are composed of steep edges and slopes that representing abrupt faults, linear deterioration and/or regime transitional response,superimposed with simulated random noise and highamplitude impulsive noise. Results show that median filter is good at removing impulsive noise and outliers. In addition,random noise is suppressed to great extents while preserving the final details. Practical application to gas turbine experimental sensor data validation confirms the above conclusions.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2006年第3期595-600,共6页 Journal of Aerospace Power
基金 湖南省优秀博士论文基金资助(2003011)
关键词 航空 航天推进系统 中值滤波 传感器数据校正 燃气涡轮发动机 脉冲噪声 aerospace propulsion system median filter sensor data validation gas turbine engine impulse noise
  • 相关文献

参考文献7

  • 1Sun T,Gabbouj M,Neunou Y.Center Weighted Median Filters:Some Properties and Their Applications in Image Processing[J].Signal Processing,1994,35(3):213~229.
  • 2张丽,陈志强,高文焕,康克军.均值加速的快速中值滤波算法[J].清华大学学报(自然科学版),2004,44(9):1157-1159. 被引量:54
  • 3Ganguli R.Jet Engine Gas-Path Measurement Filtering Using Center Weighted Idempotent Median Filters[J].Journal of Propulsion and Power,2003,19(5):930~937.
  • 4Ganguli R.Data Rectification and Detection of Trend Shifts in Jet Engine Gas Path Measurements Using Median Filters and Fuzzy Logic[J].Journal of Engineering for Gas Turbines and Power,2002,124(4):809~816.
  • 5Manders E J,Biswa G,Mosterman P J,et al.Signal Interpretation for Monitoring and Diagnosis,A Cooling System Testbed[J].IEEE Transactions on Instrumentation and Measurement,2000,49(3):503~508.
  • 6Lu P J,Hsu T C.Application of Auto-Associative Neural Network on Gaspath Sensor Data Validation[J].Journal of Propulsion and Power,2002,18 (4):879~888.
  • 7叶志锋,孙健国.用自联想神经网络处理发动机测量参数[J].数据采集与处理,2003,18(2):218-221. 被引量:7

二级参考文献12

  • 1Lu P J, Zhang M C, Hsu T C, et al. An evaluation of engine faults diagnostics using artificial neural networks [A]. Proceedings of ASME TURBOEXPO 20001[C]. Munich Germany,2000. 1-7.
  • 2Volponi A J,DePold H,Ganguli R,et al. The use of Kalman filter and neural networks methodologies in gas turbine performance diagnostics: a comparative study[A]. Proceedings of ASME TURBO EXPO 2000[C]. Munich Germany,2000. 1-9.
  • 3Zedda M, Singh R. Fault diagnosis of A turbofan engine using neural networks: a quantitative approach[R]. AIAA-98-3602,1998.
  • 4Guo T H, Saus J, Lin C F, et al. Sensor validation for turbofan engines using an autoassociative neural networks[R]. AIAA-96-3926,1996.
  • 5Davies E R.Machine Vision: Theory,Algorithms,Practicalities [M].London: Academic Press,1997.
  • 6Pitas I,Venetsanopou A.Nonlinear Digital Filters: Principles and Application [M].Norwell: Kluwer,1990.
  • 7Castleman K R.Digital Image Processing [M].Beijing: Tsinghua University Press and Prentice-Hall International Inc,1996.
  • 8Huang T S,Tang G T.A fast two-dimensional median filtering algorithm [J].IEEE Trans Acoustics,Speech,and Signal Processing,1979,27(1): 1318.
  • 9Astola J T,Campbell T G.On computation of the running median [J].IEEE Trans Acoustics,Speech,and Signal Processing,1989,37(4): 572574.
  • 10Astola J,Kuosmanen P.Fundamentals of Nonlinear Digital Filtering [M].Boca Raton,FL: CRC,1997.

共引文献59

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部