期刊文献+

线性随机微分延迟方程复合Euler方法的均方收敛性(英文) 被引量:2

Mean square convergence of the composite Euler method for a linear stochastic differential delay equation
下载PDF
导出
摘要 定义了复合Euler方法,把其应用到线性随机微分延迟方程上.详细地研究了复合Euler方法的均方收敛性,证明其收敛阶是强0.5阶,并给出数值试验. The composite Euler method is defined, and is applied to a linear stochastic differential delay equation. Convergence of the composite Euler method in the mean square sense for a linear stochastic differential delay equation is studied. It is proved that the composite Euler method is convergent with strong order 0. 5. The numerical experiments are given.
作者 周立群
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2006年第3期326-330,335,共6页 Journal of Natural Science of Heilongjiang University
关键词 随机微分延迟方程 复合Euler方法 均方收敛性 数值解 stochastic differential delay equations composite Euler method mean square convergence numerical solution
  • 相关文献

参考文献10

  • 1MAO X. Exponential Stability of Stochastic Differential Equations[ M]. New York: Marcel Dekker, 1994.
  • 2MOHAMMED S E A. Stochastic Functional Differential Equations, Research Notes in Mathematics( Vol. 99) [ R]. London :Pitman, 1984.
  • 3BURRAGE K, BURRAGE P M. High strong order explicit Runge - Kutta methods for stochastic ordinary differential equation [ J ]. Appl Numer Math, 1996,22:81 - 101.
  • 4KLOEDEN P E, PLATEN E. Numerical Solution of Stochastic Differential Equations[ M]. Berlin:Springer, 1992.
  • 5MILSTEIN G N. Numerical Integration of Stochastic Differential Equations[ M]. Dordrecht: Kluwer Academic Publishers Group, 1995.
  • 6TIAN T H, BURRAGE K. Two -stage stochastic Runge -Kutta methods for stochastic differential equations[ J ]. BIT Numer Math, 2002,42:625-643.
  • 7MINGZHU L, WANGRONG C, ZHENCHENG F. Convergence and stability of the semi - implicit Euler method for a linear stochastic differential delay equation [ J ]. J Cam, 2004,170:255 - 268.
  • 8BAKER C T H, BUCKWAR E. Numerical analysis of explicit one - step methods for stochastic delay differential equations[ J]. LMS J Comput Math, 2000,3:315 -335.
  • 9BUCKWAR E. Introduction to the numerical analysis of stochastic delay differential equations[ J ]. J Cam, 2000,125:297 -307.
  • 10MAO X, SABANIS S, Numerical solutions of stochastic differential delay equations under local Lipschitz eondition[J]. J Cam,2003, 151 : 215 -227.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部