摘要
定义了复合Euler方法,把其应用到线性随机微分延迟方程上.详细地研究了复合Euler方法的均方收敛性,证明其收敛阶是强0.5阶,并给出数值试验.
The composite Euler method is defined, and is applied to a linear stochastic differential delay equation. Convergence of the composite Euler method in the mean square sense for a linear stochastic differential delay equation is studied. It is proved that the composite Euler method is convergent with strong order 0. 5. The numerical experiments are given.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2006年第3期326-330,335,共6页
Journal of Natural Science of Heilongjiang University
关键词
随机微分延迟方程
复合Euler方法
均方收敛性
数值解
stochastic differential delay equations
composite Euler method
mean square convergence
numerical solution