期刊文献+

Dynamic Behavior of a Logistic Type Equation with Infinite Delay 被引量:3

Dynamic Behavior of a Logistic Type Equation with Infinite Delay
原文传递
导出
摘要 A non-autonomous Logistic type equation with infinite delay is investigated. For general nonautonomous case, sufficient conditions which guarantee the uniform persistence and globally attractivity of the system arc obtained; For almost periodic case, by means of a suitable Lyapunov functional, sufficient conditions are derived for the existence and uniqueness of almost periodic solution of the system. Some new results are obtained. A non-autonomous Logistic type equation with infinite delay is investigated. For general nonautonomous case, sufficient conditions which guarantee the uniform persistence and globally attractivity of the system arc obtained; For almost periodic case, by means of a suitable Lyapunov functional, sufficient conditions are derived for the existence and uniqueness of almost periodic solution of the system. Some new results are obtained.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第2期313-324,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(10501007) the Foundation of Science and Technology of Fujian Province for Young Scholars(2004J0002) Foundation of Fujian Education Bureau(JA04156).
关键词 Logistic type equation infinite delay Lyapunov functional existence UNIQUENESS almost periodic solution Logistic type equation, infinite delay, Lyapunov functional, existence, uniqueness, almost periodic solution
  • 相关文献

参考文献4

二级参考文献10

  • 1李黎明.一类高维非自治系统的周期解[J].应用数学学报,1989,12(3):272-280. 被引量:38
  • 2庚建设,中国科学.A,1996年,26卷,1期,23页
  • 3Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1993年
  • 4Zhang B G,J Math Anal Appl,1990年,150卷,274页
  • 5何崇佑,概周期微分方程,1992年,154页
  • 6Lalli B S, Zhang B G. On a periodicdelay population model[J]. Quart Appl Math, 1994, LII(1):35-42.
  • 7Gopalsamy, K, Ladas G. On the oscillation and asymptotic behavior of N'(t)+N(t)[a + bN(t- τ)- cN2(t-τ)][J]. Quart Appl Math, 1990, XL VIII(3):433-440.
  • 8Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M].Boston: Academic Press, 1993, 143-146.
  • 9Yan J R, Feng Q X. Global attractivity and oscillation in a nonlinear delayequation[J]. Nonlinear Analysis, 2000, 43(1):101-108.
  • 10Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M].Berlin: Springer Verlag, 1977, 40-45.

共引文献46

同被引文献12

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部