期刊文献+

一种新的用于网络层故障检测算法——RRBFNN 被引量:2

A New Algorithm of Net Layer Trouble-shooting—RRBFNN
下载PDF
导出
摘要 提出一种基于粗糙集和径向基函数思想的网络层故障检测算法—RRBFNN.该方法具有简化样本、适应性强、容错性高等特点,能有效处理网络层故障诊断中噪声和不相容的信息。由于检测问题的实质是一种映射,该方法用一种前馈型网络来逼近这种映射关系,实现对故障的有效分类。同时,RRBFNN结构可以随着网络层中各种服务和应用的变化而构造。仿真表明,利用该方法实现的系统与同类的其他方法相比,提高了检测准确率和诊断速度。 Based on rough sets and radial basis function, a RRBFNN algorithm was proposed for the design of network fault diagnosis system. Reduced information table is obtained implying that the number of evaluation criteria is reduced with no information loss through the rough set approach. This reduced information is used to develop classification rules and train neural network to infer appropriate parameters. The rules developed by RA-Neural network analysis show the best prediction accuracy if a case does match any of the rules. It is capable of overcoming several shortcomings in the existing diagnosis systems, such as a dilemma between stability and redundancy, and provides the functions such as gathering of data, analysis, storing and response. Since the essence of fault diagnosis is a kind of mapping , an artificial neural network model is adopted to deal with the mapping relations, categorizing the network faults. The experimental system implemented by this method shows fine diagnostic ability.
出处 《兵工学报》 EI CAS CSCD 北大核心 2006年第3期422-427,共6页 Acta Armamentarii
基金 国家自然科学基金资助项目(60273035)
关键词 计算机系统结构 粗糙集 径向基函数 故障诊断 computer system architecture rough set radial basis function fault diagnosis
  • 相关文献

参考文献12

  • 1Caserri C,Meo M.A new approach to model the stationary behavior of TCP connections[C].Proc IEEE INFOCOM2000,Tel Aviv,Israel,CA:IEEE Computer Society,2000:367-375.
  • 2Floyd S,Fall K.Promoting the use of End-to-End congestion control in the Internet[J].IEEE/ACM Trans Networking,1999,7(4):458-472.
  • 3Dickerson J E,Dickerson J A.Fuzzy network profiling for intrusion detection[J].Int Conference of the North American,2002,19(1):301-306.
  • 4Dickerson J E,Juslin J.Fuzzy intrusion detection[C].ISFA World Congress and 20th NAFIPS International Conference,Tel Aviv,Israel,CA:IEEE Computer Society,2001:1506-1510.
  • 5Siraj A,Bridges S M.Fuzzy congnitive maps for decision support in an intelligent intrusion system[C].ISFA World Congress and 20th NAFIPS International Conference,Tel Aviv,Israel,CA:IEEE Computer Society,2001:2165-2170.
  • 6Harris B,Hunt R.TCP/IP security threats and attack methods[J].Computer Communications,1999,22(10):885-897.
  • 7Haas R,Droz P,Stiller B.Autonomic service deployment in networks[J].IBM Systems Journal,2003,42(1):150-164.
  • 8Tagliaferri R,Eleuteri A,Meneganti M,et al.Fuzzy min-max neural network:from classification to regression[J].Soft Computing,2001,32(5):59-76.
  • 9Lewis D D,Schapore R E,Callan J P,et al.Training algorithms for linear text classifiers[C].John White Proc of the 19th Int'1 ACM SIGIR Conf on Research and Developmentin Information Retrieval,New York:ACM Press,1996:298-306.
  • 10周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:246

二级参考文献8

  • 1[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 2[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 3[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 4[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 5[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 6[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120
  • 7崔伟东,周志华,李星.神经网络VC维计算研究[J].计算机科学,2000,27(7):59-62. 被引量:3
  • 8周志华,何佳洲,陈世福.神经网络国际研究动向——2000年国际神经网络联合大会评述[J].模式识别与人工智能,2000,13(4):415-418. 被引量:8

共引文献433

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部