期刊文献+

昼夜转换场景中的车辆检测 被引量:3

Vehicle Detection In Day-night Shift Scenes
下载PDF
导出
摘要 在城市交通流量视频检测系统中,昼夜转换是必须面对的问题,在白天和黑夜的过渡期间,简单的使用白天算法或夜间算法检测效果较差。本文提出一种针对昼夜转换场景的车辆检测算法,该算法首先提取出背景图像,针对昼夜转换场景中光线昏暗、变化较快的特点,建立了一种能够快速跟踪背景变化的背景更新模型;然后采用背景差分的方法检测运动车辆。实验表明,本文算法能够很好的检测昼夜转换场景中的运动车辆。 In the video-based urban traffic flow detection system, day-night shift is an important problem, Whatever the day or the night algorithms are not suitable for the day-night shift scenes, and detection result are unsatisfied. This paper presents a vehicle detection algorithm for day - night shift scenes. In the day-night shift scenes, the environment is dim and light intensity changes quickly. So the algorithm firstly builds a background update model that can quickly follow up the background shift. After that, the background subtraction method is applied to detect moving vehicles. The experiment results show that the algorithm can accurately detect the vehicles in the day - night shift scenes.
作者 刘勃 周荷琴
出处 《信号处理》 CSCD 北大核心 2006年第3期390-394,共5页 Journal of Signal Processing
关键词 昼夜转换 背景更新 车辆检测 Day-night shift Background update Vehicle detection
  • 相关文献

参考文献8

  • 1Coifman B, Beymer D, McLauchlan P, and Malik J. A realtime computer vision systemfor vehicle tracking and traffic surveillance. Transportation Research : Part C, 6 (4) : 271 -288,1998.
  • 2Jung YK and Ho YS. Traffic parameter extraction using video-based vehicle tracking. In IEEE International Conference on ITS, pages 764 - 769, Oct 1999.
  • 3Badenas J, Sanchiz JM, and Pla F. Motion-based segmentation and region tracking in image sequences. Pattern Recognition, 34 ( 3 ) :661 - 670, March 2001.
  • 4Taktak R, Dufaut M, and Husson R. Vehicle detection at night using image processing and pattern recognition. In IEEE International Conference of Image Processing, pages 296 - 300, November 1994.
  • 5Cucchiara R and Piccardi M. Vehicle detection under day and night illumination. In Proceedings of Third International ICSC Symposia on Intelligent Industrial Automation,Special Session on Vision Based Intelligent Systems for Surveillance and Traffic Control, pages 789 - 794,1999.
  • 6Guo D, Hwang YC, Adrian YC, and Laugier C. Traffic monitoring using short-long term background memory. In IEEE 5th International Conference on Intelligent Transportation Systems, pages 124 - 129, Singapore, 2002.
  • 7Koller D, Weber J, Huang T, Malik J, Ogasawara G, Rao B,and Russell S. Towards robust automatic traffic scene analysis in real-time. Pattern Recognition, 1 : 126 - 131,1994.
  • 8Stauffer C and Grimson WE L. Adaptive background mixture models for real-time tracking. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognitioin, volume 2, pages 246 - 252,1999.

同被引文献33

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部