期刊文献+

类氢氖在高温高密度等离子体中的光谱漂移 被引量:2

Spectral line shifts of H-like neon in hot and dense plasmas
下载PDF
导出
摘要 采用离子球模型,通过自洽求解Poisson方程和Dirac方程,得到氖的类氢离子低能级组态的能级能量随等离子体电子温度和电子密度的变化关系,进一步研究了等离子体电子温度和电子密度对光谱漂移的影响。结果表明:光谱漂移随着等离子体电子密度的增大而增大,随着电子温度的升高而减小;谱线精细结构分裂随着电子密度的增大而减小,随着电子温度的升高而增大。等离子体对束缚电子的屏蔽是决定光谱漂移的主要原因。这些变化规律不仅对等离子体光谱模拟结果产生影响,而且使实验上观测光谱的相对或绝对漂移成为可能,从而为高密度等离子体诊断的新方法提供了理论依据。 By supposing the ion sphere model, the self-consistent field method between the Poisson-Boltzmann equation and the Dirac equation is used to calculate the energy levels of H-like neon immersed in hot and dense plasmas. Consequently, the effects of the plasma on the bound energy levels, and on the transitions between ls and 2p electron configurations are studied. The results show that the spectral line shift increases with the increase of electron density, and decreases with the increase of electron temperature. The discrepancy of the fine spectral splitting decreases with the increase of electron density, and increases with the increase of electron temperature. All the variations will not only seriously affect the final spectrum simulations, but also make it possible to experimentally observe the relative or absolute shifts. Thus, measurement of the relative position of the fine structure splitting will become a potential new way in dense plasma diagnoses.
作者 张丽 李向东
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2006年第5期779-784,共6页 High Power Laser and Particle Beams
基金 国家自然科学基金资助课题(10274089)
关键词 类氢离子 等离子体 光谱漂移 精细结构分裂 离子球模型 H-like ion plasma Spectral line shift Fine structure splitting Ion sphere model
  • 相关文献

参考文献12

  • 1Murillo M S, Weisheit J C. Dense plasmas, screened interactions, and atomic ionization[J]. Phys Rep, 1998, 302(1):1-65.
  • 2Nantel M, Ma G, Gu S, et al. Pressure ionization and line merging in strongly coupled plasmas produced by 100-fs laser pulses[J]. Phy Rev Left, 1998, 80(20) :4442-4445.
  • 3Massacrier G, Dubau J. A theoretical approach to N-electron ionic structure under dense plasma conditions: Ⅰ. Blue and red shift[J]. J Phys B, 1990, 23(13) :2459S-2469S.
  • 4Griem H R, Principles of Plasma Spectroscopy[M]. Cambridge: Cambridge University Press, 1997:1-362.
  • 5Nguyen H, Koenig M, Benredjem D, et al. Atomic structure and polarization line shift in dense and hot plasmas[J]. Phys Rev A, 1986, 33(2) :1279-1290.
  • 6Koenig M, Malnoult P, Nguyen H. Atomic structure and line broadening of He-like ions in hot and dense plasmas[J]. Phys Rev A, 1988,38(4):2089-2098.
  • 7Saemann A, Eidmann K, Golovkin I E, et al. Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target[J]. Phys Rev Lett, 1999, 82(24):4843-4846.
  • 8Renner O, Addmek P, Angelo P, et al. Spectral line decomposition and frequency shifts in Al He α group emission from laser-produced plasma[J]. JQSRT, 2006, 99(1-3):523-53.
  • 9Pang J Q, Han G X, Wu Z Q, et al. Analytic formulae of atomic energy levels in high-temperature low-density plasmas[J]. J Phys B,2002, 35(9):2117-2123.
  • 10Saha B, Mukherjee K, Bielifiska-Waz D, et al. Time-dependent perturbation calculations for transition properties of two-electron atoms under Debye plasma[J]. JQSRT, 2003, 78(1): 131-137.

同被引文献26

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部