期刊文献+

基于序列数据挖掘的中文网页特征选择方法 被引量:2

Chinese Web page feature selection method based on sequential data mining
下载PDF
导出
摘要 提出了一种基于序列数据挖掘的中文网页候选特征的选择方法,并用于中文网页分类模型.该方法运用改进的PAT树结构挖掘频繁出现在同一类中文网页中的字符串,通过净频率计算,挖掘出中文网页中频繁出现的有意义的词、短语、英文单词等,并结合CHI算法得到文本特征.实验表明,该算法不仅能挖掘出传统方法所选择出的绝大部分特征,还能挖掘出一些有意义的、切词系统词库中没有的、能反映分类特点的人名,地名,新词、常用语、外文单词等. A method is proposed to select feature candidates.from Chinese websites on the basis of sequential data mining, and it is used in the model of Chinese websites classification. This method uses improved PAT tree data structure to mine the frequent strings in the same class of Chinese websites, calculates the net frequency, mines frequent meaningful words, phrases, and English words from Chinese websites, and obtains text features with the help of the CHI algorithm. Experiments show that this algorithm not only mines most of the features selected by the traditional algorithm, but alse mines some new meaningful personnames, placenames, new words, phrases, and foreign words.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2006年第3期97-100,共4页 Journal of Shandong University(Natural Science)
基金 福建省科技计划资助项目(2004I014)
关键词 序列数据挖掘 PAT树 净频率 频繁字串 中文网页分类 sequential data mining pat-tree net frequency frequent string chinese web page classification
  • 相关文献

参考文献4

  • 1Gaston H Gonnet, Ricardo A Baeza-yates, Tim Snider. Information retrieval data structures & algorithms[M]. Boston, US:Prentice Hall Press, 1992. 66 - 82.
  • 2Lee-Feng Chien. PAT-tree-based keyword extraction for chinese information retrieval [A]. Proceedings of 1997 International ACM SIGIR Conference on Research and Development in Informarion Retrieval[C]. New York, US: ACM Press, 1997. 50- 58.
  • 3Yih-Jeng Lin, Ming-Shing Yu. Extracting chinese frequent strings without a dictionary from a chinese corpus and its applications[J]. Journal of Inforamtion Science and Engineering,2001, 17(5) :805 - 824.
  • 4冯是聪,单松巍,龚笔宏,张志刚,李晓明.“天网”目录导航服务研究[J].计算机研究与发展,2004,41(4):653-659. 被引量:8

二级参考文献10

  • 1WebInfomallWebsitshttp://net.cs.pku.edu.cn/-webg/infomall/index.html . 2002
  • 2TianwangsearchengineWebsits http://e.pku.edu.cn . 1997
  • 3http://cn.yahoo.com . 2003
  • 4YYang,XLiu.Are examinationoftextcategorizationmethods[].ACMSIGIRConfonResearchandDevelopmentinInformationRetrieval.1999
  • 5FengShicong,ShanSongwei,ZhangZhigongetal.AdatasetofChineseWebpagesanditscategorization[].ProcoftheCross straitInformationTechnologyWorkshop.2002
  • 6YYang,JanOPedersen.Acomparativestudyonfeatureselectionintextcategorization[].ThethInt’’lConfonMachineLearning.1997
  • 7YYang.Astudyonthresholdingstrategiesfortextcategoriza tion[].ACMSIGIRConfonResearchandDevelopmentinInforma tionRetrieval.2001
  • 8SChakrabarti.Dataminingforhypertext:Atutorialsurvey[].ACMSIGKDDExplorations.2000
  • 9LeiMing,WangJianyong,ChenBaojueetal.Improvedrele vancerankinginwebgather[].JournalofComputerScienceandTechnology.2001
  • 10WangJianyong,ShanSongwei,LeiMingetal.Websearchen gine:Characteristicsofuserbehaviorsandtheirimplication[].Sci enceinChinaSeriesF.2001

共引文献7

同被引文献51

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部