期刊文献+

新的二维谱估计方法——参数加权法 被引量:5

New approach for 2-D spectrum estimation——parameter weight method
下载PDF
导出
摘要 提出了一种新的二维MUSIC方法。由于同时利用了矩阵的特征值和特征向量,其搜索(或求根)过程由2个一维过程组成,避开了二维谱峰搜索且无需配对。通过分析,证明该方法不存在兼并问题,阵元利用率较高。理论分析和仿真结果表明算法的有效性。 A new approach of 2-D MUSIC algorithm was proposed. Using the eigenvector and the eigenvalue of the covariance matrix simultaneously, the method was composed of two one-dimension searching and avoided the costly 2-D searching. The pairings of the estimated parameters were automatically determined and the estimation precision was high. It was proved that the algorithm was valid even in the case that one of two parameters was same. Simulation results are presented to demonstrate the performance of the proposed method.
作者 鲍拯 王永良
出处 《通信学报》 EI CSCD 北大核心 2006年第6期16-20,共5页 Journal on Communications
基金 国家自然科学基金资助项目(60272086)~~
关键词 二维谱估计 MUSIC 特征值搜索 特征向量 2-D spectrum estimation MUSIC eigenvalue search eigenvector
  • 相关文献

参考文献6

二级参考文献15

  • 1[1]Schmidt R O.Multilinear atray manifoldinterpolation.IEEE Trans on SP Vol 40 No.4,857~866,Apr 1992
  • 2[2]Weiss A J, Friedlander B. Manifold interpolation for diversely polarized arrays. IEE Proc Radar, Sonar, and Navigation Vol 141 No. 1, 19~24, Feb 1994
  • 3[3]Hung E. Matrix-Construction calibration method for antenna arrays. IEEE Trans on AES Vol 36 No.3,819~828, July 2000
  • 4[4]Ng B C, See C M S. Sensor-array calibration using a maximum-likelihood approach. IEEE Trans AP Vol 44No.6 Jun 1996, 827~835
  • 5[5]Stavropoulos K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling. In: Proceedings of the EUSIPCO 2000, Vol Ⅲ, 417~1420 Finland
  • 6[6]Zhang Ming, Zhu Zhao-Da. DOA estimation with sensor gain, phase and position perturbations. Proc,IEEE NAECON 1993, 67~69
  • 7[7]Fistas N, Manikas A. A New General Global Array Calibration Method. ICASSP 1994, Vol 4, 73~76
  • 8[8]Weiss A J, Friedlander B. Self-Calibration for High-Resolution Array Processing. in Advances in Spectrum and Array Processing, Vol Ⅱ, Haykon S, ed., Ch. 10, Englewood Cliffs, NJ: Prentice-Hall, 1991
  • 9[9]Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling. IEEE Trans AP Nov 39 No.3,273~284, Mar 1991
  • 10[10]Flanagan B. P, Bell K L. Improved array self-calibration with large sensor position errors for closed space sources. Proc. 2000 Sensor Array and Multichannel workshop, Cambridge, MA, March 2000, 484~488

共引文献187

同被引文献20

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2徐友根,刘志文.极化信号频率、二维到达角和极化参数的同时估计[J].信号处理,2005,21(4):359-364. 被引量:4
  • 3王洪洋,廖桂生,王兰美.基于矢量传感器阵列的信号多参数估计方法[J].电路与系统学报,2006,11(3):88-95. 被引量:7
  • 4Zohowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling [J]. IEEE Trans,1994,SP-42(10) :2781-2794.
  • 5Gonen E, Mendel J M. Applications of cumulants to array processing part IV: direction finding in coherent signals case [ J ]. IEEE Trans, 1997, SP-45 (9) :2265-2275.
  • 6Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals [ J ]. IEEE Trans, 1985, ASSP-33 (4) : 806- 811.
  • 7Li J, Compton R T. Two-dimensional angle and polarization estimation using the ESPRIT algorithm[J].IEEE Trans. on Antennas and Propagation, 1992, 40(5) : 550 - 555.
  • 8Zoltowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling[J]. IEEE Trans. on Signal Processing, 1994, 42 (10) : 2781 - 2794.
  • 9Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J].IEEE Trans. on Acoustics, Speech, and Signal Processing, 1985, 33 (4) : 806 - 811.
  • 10WAX M, SHAN T J, KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Trans ASSP, 1984, 32(4): 812-827.

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部