期刊文献+

水质耦合模型在农药对土壤包气带污染中应用 被引量:1

Application of water solute coupled model to transportation of chemicals and pesticides on unsaturated zone pollution
下载PDF
导出
摘要 在综合考虑农药类污染物在非饱和土壤环境中的水动力弥散、吸附解吸及微生物降解等环境行为的前提下,建立土壤中农药类化学污染物迁移的耦合动力学模型,模型中充分考虑了溶质在土壤固体骨架上非平衡吸附作用,并对农药阿特拉津在土壤中的运移过程进行了数值模拟,对模型中的几个重要参数(含水率、吸附速率和水动力弥散系数)进行了灵敏度分析;结果表明,土壤水分含量变化对农药类污染物质在环境介质中迁移转化起着重要作用。这对于定量化分析农药类污染物在土壤中迁移对地下水污染的潜在性影响提供了可靠的理论根据,同时可为现场农药环境污染评价提供技术支持。 On the premise of considering diffusion, absorption-desorption, distribution and biodegradation of chemical pollutants in solid-water environment, a water solute coupled model for chemical pollutant transportation and transformation has been developed based on the theory of soil solute transport, and the non-equilibrinm adsorption is sufficiently described in the model. Numerical simulation for aldicarb transport in soil is presented. And the sensibility of some important parameters (water content, adsorption rate and hydrodynamic dispersion coefficient) is analysed. The results show that the variation of water content has an important part in pollutant migration and transformation, which provides theoretical evidence for quantitative analysis of potential effects of pesticide transport on groundwater pollution and by planners for making management decision.
出处 《辽宁工程技术大学学报(自然科学版)》 EI CAS 北大核心 2006年第B06期117-119,共3页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(50309015 50374041) 安徽农产品安全重点实验室开放基金资助项目(las200501)
关键词 吸附-解吸 土壤水分含量 农药污染 水质耦合模型 包气带 sorption-desorption: soil water content: pesticides pollution: water solute coupled model: unsaturated zone
  • 相关文献

参考文献10

  • 1Gilliom,R.,J. Barbash,D.Kolpin,and S. Larson. Testing water quality for pesticide pollution[J]. Envionmental Science and technology, 1999,33(7):164-169.
  • 2Vanclooster, M,, J.Boesten, M. Trevisan, C.Brown. A european test of pesticides leaching model: methodology and major recommendations[J].Agricultural Water Management,2000(44): 1-19.
  • 3Udoyara S. Tim and Saied .Mostaghimi.Model for predicting virus movement through soils[J]. Groundwater, 1991 (29):251-259.
  • 4T.C.Jim Yeh,Rajesh Strivastava, Amado Guzman, and Thomas Harted.A numerical model for water and chemical transport in variably saturated porous media[J]. Groundwater, 1993(31): 634-644.
  • 5贝尔.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.620.
  • 6Xue Qiang, Liang Bing, Wang Qi-xin. Environmental prediction models for transport of chemicals and pesticides in soils[J]. Journal of Experimental Botany, 2003(54):59-59.
  • 7Mironenko E V, Pachepsky Y A. Analytical solution for chemical transport with non-equilibrium mass transfer, adsorption and biological transformation[J]. J.of Hyd., 1984(70): 167-175.
  • 8薛强,梁冰,刘晓丽,陈贺.土壤水环境中有机污染物运移环境预测模型的研究[J].水利学报,2003,34(6):48-55. 被引量:38
  • 9Sardin, M., D. Schweich, E Leij, M. Th. van Genuchten. Modeling the non equilibrium transport of linearly interacting solutes in porous media: a review[J]. Water Resour. Res, 1991(27):2287-2307.
  • 10Culver T B, Hallisey S E Sahoo D, Deitsch J J, Smith J A. Modeling the desorption of organic contami -nants from long-term contaminated soil using distributed mass transfer rates[J]. Environmental Science & Technology 1997(31):1581-1588.

二级参考文献4

共引文献67

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部