期刊文献+

基于演化多目标算法的混合流水作业调度优化

Hybrid Flow Shop Scheduling Problem Based on Evolutionary Multi-objective Algorithm
下载PDF
导出
摘要 针对供应链网络优化领域中的混合流水作业调度问题提出了一种新的多目标演化优化算法。给出了这类问题的通用优化模型,在此基础上,提出了基于流程的矩阵基因编码方案,动态适应度分配机制,并引入小生境保优策略构造了算法过程,利用收敛进程参数分析了算法的收敛性能。性能分析和算例实验表明算法对于高维多目标优化问题是有效的,且能够以较快的速度收敛。 A new evolutionary algorithm for solving multi-objective hybrid flow shop scheduling problem (HFSP) which is an important topic in supply chain network optimization is presented. The general model for the HFSP is proposed, and a matrix gene encoding method and a sort of fitness assignment strategy which can approach the optimum solutions with dynamic weighting are discussed. The algorithm process is presented by using elitist strategy. The convergent performance of the algorithm is analyzed by computing the progress measurement. The performance analysis and the experimental results show that the algorithm is effective for high-dimensional multi-objective problems and can converge to satisfactory solutions at a high speed.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2006年第3期327-331,共5页 Journal of Nanjing University of Science and Technology
基金 国家"863"计划(2003AA41302 2003AA4Z3370)
关键词 混合流水作业调度 多目标优化 演化计算 适应度分配机制 hybrid flow shop scheduling multi-objective optimization evolutionary computing fitness assignment
  • 相关文献

参考文献12

  • 1Brah S A,Hunsucker J L.Branch and bound algorithm for the flow shop with multiple processors[J].European Journal of Operational Research,1991,51:88-99.
  • 2Brah S A,Loo L L.Heuristics for scheduling in a flow shop with multiple processors[J].European Journal of Operational Research,1999,113:113-122.
  • 3Xiao Wendong,Hao Peifeng,Zhang Sen,Xu Xinhe.Hybrid flow shop scheduling using genetic algorithms[A].IEEE Proceeding of 3 rd World Congress on Intelligent Control and Automation[C].Hefei:Institute of Electrical and Electronics Engineers Inc,2000.537-541.
  • 4Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithms[A].Proceedings of the First International Conference on Genetic Algorithms and Their Application[C].Hillsdale:Lawrence Erlbaum Associates,1985.93-100.
  • 5Richardson J T,Palmer M R,Liepins G,et al.Some guidelines for genetic algorithms with penalty functions[A].Proceedings of the Third International Conference on Genetic Algorithms[C].Washington:Morgan Kaufmann Publishers,1989.191-197.
  • 6Fonseca C M,Fleming P J.Genetic algorithms for multiobjective optimization:Formulation,discussion and generalization[A].Genetic Algorithms:Proceedings of the Fifth International Conference[C].San Mateo:Morgan Kaufmann,1993.416-423.
  • 7Srinivas N,Deb K.Multi-objective optimisation using non-dominated sorting genetic algorithm[J].Evolutionary Computation,1994,2 (3):221-248.
  • 8Fonseca C M,Fleming P J.An overview of evolutionary algorithms in multi-objective optimization[J].Evolutionary Computation,1995,3 (1):1-16.
  • 9Ishibuchi H,Yoshida T,Murata T.Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling[J].IEEE Trans on Evolutionary Computation,2003,7 (2):204-223.
  • 10Ishibuchi H,Murata T.A multi-objective genetic local search algorithm and its application to flow shop scheduling[J].IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,1998.28 (3):392-403.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部