期刊文献+

最大熵和Brill方法结合识别英语BaseNPs 被引量:6

Identifying English BaseNPs Through a Combination of Maximum Entropy Approach and Brill Approach
下载PDF
导出
摘要 为了进一步提高基本名词短语(BaseNPs)的识别精度,针对最大熵方法和Brill方法各自的特点,提出基于两者相结合的英语基本名词短语识别算法.该算法是在高准确率词性标注的基础上实现的.在训练和测试两个阶段中,均先采用最大熵方法识别基本名词短语,然后将已具有很高精度的识别结果作为初始标注结果运用于Brill方法中.实验结果表明,此联合算法达到了94%的准确率和召回率,充分融合了最大熵方法和Brill方法的优点,可与基于相同训练和测试语料的目前最理想的英语基本名词短语识别结果相比. To increase further the accuracy of BaseNP identification and utilize features of the maximum entropy approach and the Brill approach, an English BaseNPs identification algorithm based on a combined approach is presented. The algorithm is based on a high-performance POS (parts of speech) tagger. During the training phase and the application phase, maximum entropy approach is first applied to the initialization process of Brill approach, and the Brill approach is then run on its results already having high accuracy. Experimental results showed that this combined algorithm achieved a high precision and recall rate of over 94 %, fully inosculating the strength of the maximum entropy approach and the Brill approach. It is comparable to the most ideal results of existing English BaseNP identification based on the same training and testing corpus.
作者 吕琳 刘玉树
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第6期500-503,共4页 Transactions of Beijing Institute of Technology
基金 国家部委预研项目(504-4)
关键词 基本名词短语 短语识别 最大熵 Brill方法 BaseNP phrase identification maximum entropy Brill approach
  • 相关文献

参考文献8

二级参考文献46

  • 1孙宏林,俞士汶.浅层句法分析方法概述[J].当代语言学,2000,2(2):74-83. 被引量:38
  • 2[1]Erik F, Tjong Kim Sang,Buchholz S. Introduction to the CoNLL-2000 Shared Task: Chunking. In: Proceedings of CoNLL2000 and LLL-2000, Lisbon, Portugal, 2000. 127~132
  • 3[2]Steven A. Parsing by Chunks. In: Berwick, Abney, Tenny eds. Principle-Based Parsing: Kluwer Academic Publishers,1991. 257~278
  • 4[5]Ratnaparkhi A. A maximum entropy model for part-of-speech tagging. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1996
  • 5[6]Ratnaparkhi A. A simple introduction to maximum entropy models for natural language processing. Institute for Research in Cognitive Science, University of Pennsylvania : Technical Report 9708, 1997
  • 6[7]Berger A, Pietra S D, Pietra V D. A maximum entropy approach to natural language processing. Computational Linguistics, 1996,22(1):39~71
  • 7[8]Skut, Wojciech, Thorsten Brants. A maximum entropy partial parser for unrestricted text. In:Proceedings of the 6th Workshop on Very Large Corpora, Montreal, Canada, 1998. 143~151
  • 8[10]Abney S. Part-of-speech tagging and partial parsing. In:Church K, Young S, Bloothooft G eds. Corpus-Based Methods in Language and Speech, An ELSNET volume, Dordrecht:Kluwer Academic Publishers, 1996. 119~136
  • 9[11]Church K W. A stochastic parts program and noun phrase parser for unrestricted text. In:Proceedings of the 2nd Conference on Applied Natural Language Processing, Texas, USA, 1988.136~143
  • 10[12]Ramshaw L A, Marcus M P. Text chunking using transformation-based learning. In: Proceedings of ACL Third Workshop on Very Large Corpora, Cambridge, USA, 1995. 82~94

共引文献118

同被引文献50

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部