期刊文献+

一种动态调整的混合蚂蚁聚类算法 被引量:5

A Dynamic Alignment Hybrid Ant-Clustering Algorithm
下载PDF
导出
摘要 设计和实现了一种改进的蚂蚁聚类算法.基于海上空袭目标攻击方向划分问题,分析了传统的聚类算法解决此类问题的不足,提出了一种动态调整的空袭方向划分混合蚂蚁聚类算法.该算法能充分利用空中目标信息动态调整参数,以获取合理聚类数和加速算法收敛,对孤立数据处理的鲁棒性较强.用人工数据集和真实数据集进行实验.结果表明,该算法是一种高效率的聚类算法,提高了空袭方向划分的准确性和科学性. A dynamic alignment hybrid ant-clustering and k-medoids (DAACM) algorithm is designed and realized. Based on aerial attack directions judgment problem, the deficiencies of traditional clustering algorithms are analyzed, DAACM algorithm for solving this problem is proposed. The novel antclustering algorithm can make full use of aerial target information, dynamically align parameters to gain the reasonable number of clusters and accelerate convergence. Also, when dealing with the isolated data, DAACM has good robustness. Some experiments have been made on real data sets and synthetic data sets. The results demonstrate that DAACM is an precision and reasonableness in solving aerial attack directions effective algorithm and can improve the judgment problem.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第6期504-507,511,共5页 Transactions of Beijing Institute of Technology
基金 国家部委预研项目(10504033)
关键词 蚂蚁聚类 动态调整 空袭方向划分 ant-clustering dynamic alignment aerial attack directions judgment
  • 相关文献

参考文献8

  • 1Beni G,Wang J.Swarm intelligence[C]∥ Proc of the Seventh Annual Meeting of the Robotics Society of Japan.Tokyo:RSJ Press,1989:425-428.
  • 2Deneubourg J L,Goss S,F rank N,et al.The dynamics of collective sorting:robot-like ants and ant-like robots[C]∥ Proc of the 1st International Conference on Simulation of Adaptive Behavior:From Animals to Animats.Cambridge:MIT Press,1991:356-363.
  • 3Lumer E,Faieta B.Diversity and adaptation in populations of clustering ants[C]∥Proc of the Third International Conference on Simulation of Adaptive Behavior:From Animals to Animates.Cambridge:MIT Press,1994:501-508.
  • 4Wu B,Zheng Y,Liu S,et al.SIM:a document clustering algorithm based on swarm intelligence[C]∥ Proc of the IEEE World Congress on Computational.Nanjing:IEEE Press,2002:477-482.
  • 5Chen Yunfei,Liu Yushu,Fattah A,et al.HDACC:a heuristic density-based ant colony clustering algorithm[C]∥ Proc of the 2004 IEEE/WIC/ACM International Conference on Intelligent Agent Technology.Beijing:IEEE Press,2004:397-400.
  • 6李进军,丛蓉,熊吉光.基于聚类分析的海上空袭目标攻击方向区分模型[J].军事运筹与系统工程,2004,18(2):22-26. 被引量:4
  • 7Han Jiawei,Kamber M.Data mining:concepts and techniques[M].New York:Morgan Kauffman Publishers,2001.
  • 8杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39

二级参考文献12

  • 1贾利民,李平,聂阿新.新一代的铁路运输系统——铁路智能运输系统[J].交通运输工程与信息学报,2003,1(1):81-86. 被引量:6
  • 2Ramos V, Merelo J J. Self-organized stigmergic document maps: environment as a mechanism for context learning [A]. In: Alba E, Herrera F, Merelo J J, et al. , ed.AEB' 2002 - 1st Spanish conference on evolutionary and bioinspired algorithms[C]. Merida, 2002. 284-293.
  • 3Yang Y, Kamel M. Clustering ensemble using swarm intelligence[A]. In: IEEE swarm intelligence symposium [C]. Piscataway, NJ: IEEE service center, 2003. 65-71.
  • 4Wu B,Shi Z. A clustering algorithm based on swarm intelligence[A]. In: Proceedings IEEE international conferences on info-tech & info-net proceeding[C]. Beijing,2001. 58-66.
  • 5Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse framework for combining partitionings[A]. In: Proceedings of Artificial Intelligence[C]. Edmonton: AAAI/MIT Press, 2002. 93-98.
  • 6Ayad H, Kamel M. Topic discovery from text using aggregation of different clustering methods[A]. In: Cohen R,Spencer B ed. Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence[C]. Calgary, 2002. 161-175.
  • 7Bonabeau E, Dorigo M, T heraulaz G. Swarm intelligencefrom natural to artificial system[M]. New York: Oxford University Press, 1999.
  • 8Deneubourg J L, Goss S, Franks N, et al. The dynamics of collective sorting: robot-like ant and ant-like robot[A]. In: Meyer J A, Wilson S W ed. Proceedings first conference on simulation of adaptive behavior: from animals to animats[C]. Cambridge, MA: MIT Press, 1991. 356-365.
  • 9Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants[A]. In: Proc. third international conference on simulation of adaptive behavior: from animals to animats 3[C]. Cambridge, MA: MIT Press, 1994. 499-508.
  • 10Murpy P M, Aha D W. UCI repository of machine learning databases [EB/OL]. http://www. ics. uci. edu/mlearn/MLRepository. html, Irvine, CA: University of California, 1994.

共引文献41

同被引文献39

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部