期刊文献+

分层正交各向异性板壳非线性有限元分析 被引量:1

Analysis of Elasto-Plastic and Geometrical Nonlinear Anisotropic Plates and Shells
下载PDF
导出
摘要 采用三维退化等参中厚壳元和分层模型,建立了分析弹塑性和几何非线性各向异性板壳的有限单元法.为克服退化壳元出现剪切和薄膜自销问题,采用9节点Heterosis单元并采用选择积分方法.文末算例表明所编程序的可靠性和通用性. The elasto-plastic and geometrical nonlinear anisotropic plates and shells are analysed using three dimensional degenerate shell element and layered model. The shear and membrance locking phenomenon can be effectively overcome using 9-node Heterosis element and selected integration. Examples presented show the applicability and versatility of the given program.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 1996年第4期33-41,50,共10页 Journal of Hunan University:Natural Sciences
关键词 几何非线性 各向异性 分层模型 板壳 有限元法 three dimensional degenerate shell element, elasto-plasticity, geometrical nonlinearity, anisotropy, layered model
  • 相关文献

同被引文献9

  • 1谢晖 成艾国 钟志华.变形裕度云图在薄板冲压成型CAE中的应用[J].湖南大学学报,1999,(5).
  • 2ZHONG Z H. Finite element procedure for contact-impact problems[M]. London:Oxford University Press, 1993.
  • 3BELYTSCHKO T, BINDEMAN L P. Assumed strain stabilization of the 4-node quadrilateral with one point quadrature for nonlinear problems[J]. Comput Mech Appl Mech Eng, 1985, 174(51):15-26.
  • 4HILL R. A user- friendly theory of orthotropic plasticity in sheet metals[J]. Int J Mech Sci, 1993,35(1): 19 - 25.
  • 5BANABIC D. Limit strains in the sheet metals by using the new Hill's yield criterion( 1993 )[J ]. Journal of Materials Processing Technology, 1999, 92 - 93:429 - 432.
  • 6CAO J. Prediction of localized thinning in sheet metal using a general anisotropic yield criterion[J ]. International Journal of Plasticity, 2000,16(9): 1105 - 1129.
  • 7MITSUTOSHI K, VIGGO T. Forming limit diagrams for anisotropic metal sheets with different yield criteria[J ]. International Journal of Solids and Structures, 2000,37: 5037 - 5059.
  • 8刘腾喜,傅衣铭,丁皓江.正交各向异性金属板料的成形极限[J].固体力学学报,2000,21(2):179-182. 被引量:22
  • 9谢晖.基于CAE仿真的冲压回弹影响因素研究[J].湖南大学学报(自然科学版),2003,30(5):29-34. 被引量:38

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部