期刊文献+

注塑成型工艺的混合智能优化 被引量:2

Hybrid Intelligent Optimization of Injection Molding Processing
下载PDF
导出
摘要 注塑成型过程系统动力学的不确定性和复杂性,限制了传统优化技术的运用。将智能优化技术引入注塑成型工艺优化,以成型过程的主要工艺参数为设计变量,利用BP网络获得工艺参数对各质量指标的近似计算关系式,以各质量指标的模糊综合评价函数为遗传算法的适应度函数,建立了解决多因素作用和多指标约束的注塑成型工艺的混合智能优化模型。通过对比实例的正交仿真试验结果,验证了该模型能快速、自动地实现非线性和不确定系统的优化求解。 Uncertainty and complexity of kinetics in injection molding system hampers the application of traditional optimization technology. The optimization model with multi-factor effect and multiindex restriction of injection molding processing was created to which hybrid intelligent technology was introduced. The main processing parameters were used as design variables. Mathematic relation between processing parameters and quality indexes was obtained by BP neural network. Comprehensive valuation formula of fuzzy quality indexes was used as the fitness function of genetic algorithm. In contrast with the results of orthogonal numerical simulation experiment, it was proved that this model could find the optimal solution of non-linear and uncertain system rapidly and automatically.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2006年第6期138-143,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 浙江省教育厅2005年度高校科研立项(项目编号:20050016)
关键词 注塑成型 混合智能 优化 Injection molding, Hybrid intelligence, Optimization
  • 相关文献

参考文献6

  • 1王利霞,王蓓,申长雨.工艺参数对注塑制品质量的影响研究[J].郑州大学学报(工学版),2003,24(3):62-66. 被引量:27
  • 2Athanasios Bikas,Nikos Pantelelis,Andreas Kanarachos.Computational tools for the optimal design of the injection molding process[J].Materials Processing Technology,2002,122:112~ 126.
  • 3郁滨,钟汉如,钟慕良,毛宗源,M.M.F.Yuen.智能消除注塑制品缺陷的研究[J].中国机械工程,2001,12(6):624-628. 被引量:16
  • 4Galantucci L M,Spina R.Evaluation of filling conditions of injection moulding by integrating numerical simulations and experimental tests[J].Materials Processing Technology,2003,141:266~275.
  • 5Prasad K D V,Yarlagadda.Development of an integrated neural network system for prediction of process parameters in metal injection moulding[J].Materials Processing Technology,2002,(130~ 131):315~320.
  • 6闻新 周露 王丹力 熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2002..

二级参考文献14

  • 1杨伦标 高英仪.模糊数字原理与应用(第2版)[M].广州:华南理工大学出版社,1996.240-248.
  • 2LIU Shih Jung. Effects of processing parameters on formation of sinkmarks on injection moulded parts[J]. Plastics,Rubber and Composites, 2001, 30(4) : 170 - 174.
  • 3CHIANG H H , HIEBER C A , WANG K K. A unified simulation of the filling and post - filling stages in injection molding, part I : formulation [ J ] . Polymer Engineeringand Science, 1991, 31(2):116- 139.
  • 4KIM S , SUH N, Knowledge- based synthesis system for injection molding [J]. Robotics and Computer Integrated Manufacturing, 1987,3(2) : 181 - 186.
  • 5CHOI G H , LEE K D , CHANG N. Optimization of process parameters of injection molding with neural network application in a process simulation environment [J]. Annals of the CIRP, 1994,43(1 ) : 449 - 452.
  • 6YE Hua, WU Yinghui, WANG K K. An optimization scheme for part quality in injection molding[ A ] . MD -Vol 79, CAE and Intelligent Processing of Polymetric Materials, ASME 1997[ C ]. 1997.139 - 149.
  • 7CHANG Tao C. Shrinkage behavior and optimization of injection molded parts studied by taguehi method[J]. Polymer Engineering and Science, 2001, 41(5) : 703 - 710.
  • 8LIU Shih Jung, CHANG Jer Haur, Application of the taguchi method to optimize the surface quality of gas assist injection molded composites [ J ] . Journal of Reinforced Plastics and Composites, 2000,19(17) : 1352 - 1362.
  • 9OTTO Vtinen, PENTTI Jrvel, KYSTI Valta,et al. The effeet of processing parameters on the quality of injection moulded parts by using the taguchi parameter design method[J] . Plastics, Rubber and Composites Processing and Applications, 1994,21(4) : 21 - 217.
  • 10Tan K H,Proc 15th Int Conference on Numerical Methods in Industrial Forming Processe,1995年

共引文献121

同被引文献18

  • 1程锦,谭建荣,余加红.基于TOPSIS的注塑工艺参数多目标稳健优化设计[J].机械工程学报,2011,47(6):27-32. 被引量:24
  • 2胡树华.产品方案评价的加权综合评价法及其应用[J].中国机械工程,1993,4(5):21-24. 被引量:17
  • 3刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 4Bozdana A T, Eyercioglu O. Development of an Expert System for the Determination of Injection Moulding Parameters of Thermoplastic Materials : EX-PIMM [J ]. Materials Processing Technology, 2002, 128(1 ) : 113 - 122.
  • 5Peng J T, Chien C F, Tseng T L B. Rough Set Theory for Data Mining for Fault Diagnosis on Distribution Feeder [C]. Generation, Transmission and Distribution, IEEE Proceedings, 2004.
  • 6Hou T H, Liu W L, Lin L. Intelligent Remote Monitoring and Diagnosis of Manufacturing Processes Using an Integrated Approach of Neural Networks and Rough Sets [J]. Journal of Intelligent Manufacturing, 2003, 14 (2) :239 - 253.
  • 7Hou T H, Liu W L, Lin L. An Improved Rough Set Approach to Design of Gating Scheme for Injection Moulding [J]. The International Journal of Advanced Manufacturing Technology, 2003, 21 (6).
  • 8Mario Rafael Rebolledo. Integrating Rough Set and Situation-based Qualitative Models for Processes Monitoring Considering Vagueness and Uncertainty[J]. Engineering Applications of Aritficial Intelligence, 2005, 18(5) :617 -632.
  • 9赵果,辛勇.基于多指标综合评价的注塑工艺参数优化[J].工程塑料应用,2008,36(1):31-34. 被引量:20
  • 10白奕.多指标综合评价的主成分分析模型及原理[J].陕西师大学报(自然科学版),1998,26(2):105-106. 被引量:35

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部