期刊文献+

基于SQL的频繁模式挖掘的研究与实现

RESEARCH AND IMPLEMENTATION OF SQL BASED FREQUENT PATTERN MINING
下载PDF
导出
摘要 频繁模式挖掘是多种数据挖掘应用中的关键问题。以一种高效的频繁模式挖掘算法FP-growth算法为例,利用关系数据库中的表来存储频繁模式树FP-tree,通过标准SQL语言及O rac le数据库PL/SQL编程技术实现了这种基于SQL的频繁模式挖掘方法,并给出了该方法较为详细的实现步骤。 Frequent pattern mining is a key problem in many data mining application. This paper takes a high performance FP-growth algorithm for example,uses table in RDBMS to store FP-trec and mines frequent patterns from it by ANSI SQL and Oracle PL/SQL programming technology,gives the detailed procedures to implement this SQL based frequent pattern mining method.
出处 《计算机应用与软件》 CSCD 北大核心 2006年第7期46-48,62,共4页 Computer Applications and Software
关键词 频繁模式挖掘 结构化查询语言 频繁模式树 频繁模式增长 Frequent pattern mining SQL FP-tree FP-growth
  • 相关文献

参考文献5

  • 1R.Agrawal,K.Shim.Developing Tightly-Coupled Data Mining Application on a Relational Database System[C].Proceedings of the 2nd International Conference.on Knowledge Discovery in Database and Data Mining.Portland,Oregon,1996.pp.287~290.
  • 2I.Pramudiono,T.Shintani,T.Tamura and M.Kitsuregawa.Parallel SQL Based Associaton Rule Mining on Large Scale PC Cluster:Performance Comparision with Directly Coded C Implementation[C].In Proceedings of Third Pacific-Asia Conf.on Knowledge Discovery and Data Mining,1999.pp.94~98.
  • 3T.Yoshizawa,I.Pramudiono and M.Kitsuregawa.SQL Based Association Rule Mining Using Commercial RDBMS(IBM DB2 UDB EEE)[C].Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery,London,UK,2000.pp.301~306.
  • 4夏克祥,李石君.基于SQL-92进行频集发现[J].计算机工程与应用,2004,40(9):177-179. 被引量:3
  • 5J.Han,J.pei,and Y.Yin,Mining frequent patterns without candidate generation[C].In Proc.of the ACM SIGMOD Conference on Management of data.2000.pp.1~12.

二级参考文献4

  • 1[1]R Agrawal,T Imielinski,A Swami.Mining association rules betwwen sets of items in large databases[C].In:Proceedings of the ACM SIGMOD Conference on Management of data, 1993:207~216
  • 2[2]S Sarawagi,S Thomas,R Agrawal.Integrating Association Rule Mining with Relational Databases:Alternatives and Implications[R].Research Report RJ 10107(91923),IBM Almaden Research Center,San Jose,CA, USA, 1998
  • 3[3]Ralf Rantzau. Frequent Itemset Discovery with SQL Using Universal Quantification[M].Computer Science Department University of Stuttgar,Germany, 2002
  • 4[4]Microsoft Corporation. OLE DB for Data Mining Specification[S].Version 1.0,2000-07

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部