期刊文献+

基于粒群算法和BP神经网络的煤电价格预测 被引量:3

The Prediction of the Price of Coal and Electricity Based on PSO and BP Neural Network
下载PDF
导出
摘要 由于煤电价格的波动受多种不确定因素的影响,且煤价和电价之间还存在非常复杂的耦合关系,它是一个典型的非线性系统,所以使用传统的方法来建立煤电价格的预测模型非常困难。针对这种情况,提出了一种基于粒群算法(PSO)和BP神经网络的煤电价格预测方法。采用PSO训练BP神经网络,不仅克服了BP神经网络算法易于陷入局部最优的缺点,而且可以提高网络的收敛速度和预测精度。结合煤电价格的历史数据,在Matlab平台上进行了仿真实验,验证了该预测模型的优越性。 Since the price of coal and electricity depends on various indeterminate factors, there is a very complicated coupling relationship between the price of coal and electricity and this prediction model is a typical nonlinear system, it is hardly possible to set up a precise prediction model with the traditional methods. This paper proposes a means, on the basis of PSO ( particle swarm optimization) and BP neural network, to predict the price of the coal and electricity. With the introduction d PSO and BP neural network, this method not only avoids the shortcoming of the BP-neural-network way, which is susceptible to coming up with a partial- optimal result. Moreover, it can improve the constringency speed and the predicting exactitude of the network. Combined with the historical statistics of the coal and electricity, we carry out an emulation experiment on the platform of Matlab, thus verifying the superiority of this predicting model.
出处 《后勤工程学院学报》 2006年第3期92-95,101,共5页 Journal of Logistical Engineering University
关键词 BP神经网络 粒群算法 煤电联动 BP neural network PSO linkage motivation d the coal and electricity
  • 相关文献

参考文献10

二级参考文献33

  • 1飞思科技产品研发中心.Matlab6.5辅助图像处理[M].北京:电子工业出版社,2002..
  • 2John C Cox, Mark Rubinstein. Options Market[ M ]. New Jersey: Prentice Hall, 1985.
  • 3Eberhart R C, Shi Y. Evolving artificial mural networks[ A].In: Proc of 1998 Int'l Conf. on neural networks and brain[C] .Beijing:[s. n. ], 1998.13- 15.
  • 4Eberhart R C, Shi Y. Evolving artificial mural networks[ A]In: Proe of 1998 Int'l Conf. on neural networks and brain[C] .Beijing:[s. n. ], 1998.13- 15.
  • 5刘思峰 郭天榜 等.灰色系统理论及其应用[M].北京:科学出版社,2000.40-41.
  • 6阎平凡.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001..
  • 7Peter J Angeline, Gregory M Saunders, Jordan B Pollack. An evolutionary algorithm that constructs recurrent neural networks[J]. IEEE Transactions on Neural Networks, 1994,5(1):54-64.
  • 8Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks[J].IEEE Transactions on Neural Networks, 1994,15(1):39-53.
  • 9Xin Yao, A review of evolutionary artificial neural network[J].International Journal of Intelligent System, 1993,8:529-567.
  • 10Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C].Piscataway,NJ.USA:IEEE Service Center,1995.39-43.

共引文献54

同被引文献6

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部