期刊文献+

柠檬酸盐法制备的La_(0·8)Sr_(0·2)Ga_(0·8)Mg_(0·15)Co_(0·05)O_3夹层对阴极性能的影响

Effect of a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.15)Co_(0.05)O_3 interlayer synthesized by the citrate method on the cathode performance
下载PDF
导出
摘要 考察了在Sm0.5Sr0.5CoO3(SSC)-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5)/LSGMC5界面中加入柠檬酸盐法合成的LSGMC5夹层对界面的影响。考察了含不同温度焙烧的LSGMC5夹层的SSC-LSGMC5/LSGMC5/LSGMC5组合的微观结构及电化学性能。当夹层焙烧温度高于1 623 K时,夹层与电极的结合优于无夹层的电极/电解质界面,具有大的两相界面面积及三相界面长度。制备的组合的氧还原性能依赖于夹层以及电极的焙烧温度,含有1 673 K烧结夹层、1 123 K焙烧电极的样品具有最高的活性。与含固相法制备的LSGMC5夹层的样品相比,采用含柠檬酸盐法制备的夹层的组合具有更小的欧姆电阻及更高的氧还原活性。 The effect of the addition of a La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5) interlayer synthesized by the citrate method into the Sm0.5Sr0.5CoO3(SSC)-LSGMC5/LSGMC5 interface was studied. Microstructures and electrochemical performance of the SSC-LSGMC5/LSGMC5/LSGMC5 assembly with an LSGMC5 interlayer synthesized at various temperatures were studied. The bonding of electrode/interlayer interface was better than that of electrode/electrolyte interface without interlayer when the sintered temperature was higher than 1 623 K, showed a larger two-phase boundary area and three-phase boundary length. The performance of prepared assembly depended on the sintering temperature of both the interlayer and the electrode. The sample assembly with an interlayer sintered at 1 673 K and an electrode sintered at 1 123 K exhibited the highest performance. Compared with the assembly with an LSGMC5 interlayer synthesized by the solid-state reaction, assembly with an LSGMC5 interlayer synthesized by the citrate method showed a reduced ohmic resistance and improved activity for oxygen reduction.
机构地区 厦门大学化学系
出处 《电池》 CAS CSCD 北大核心 2006年第3期184-186,共3页 Battery Bimonthly
基金 福建省科技攻关计划重点项目(2003H046) 留学回国人员基金资助项目
关键词 柠檬酸盐法 固体氧化物燃料电池 SSC阴极 镓酸镧 夹层 citrate method solid oxide fuel cell SSC cathode lanthanum gallate interlayer
  • 相关文献

参考文献6

二级参考文献67

  • 1许兴燕,夏长荣,彭定坤,孟广耀.中低温固体氧化物燃料电池研制[J].电池,2004,34(3):222-223. 被引量:21
  • 2GOODENOUGH B J. Oxide-ion conductors by design [J].Nature, 2000, 404: 821-823.
  • 3MINH N Q. Ceramic fuel cells [J]. J Am Ceram Soc, 1993,76 : 563-588.
  • 4ISHIHARA T, MATSSUDA H, TAKITA Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor [J]. J Am Chem Soc, 1994, 116:3 801-3 803.
  • 5PETRIC A, HUANG P N. Oxide conductivity of Nd(Sr/Ca) ·Ga(Mg)O3-δ perovskites [J]. Solid State Ionics, 1996, 92:113-117.
  • 6TROFIMENKO N, ULLMANN H. Transition metal doped lanthanum gallates [J]. Solid State Ionies, 1999, 118:215-227.
  • 7HUANG K Q, GOODENOUGH B J. A solid oxide fuel cell based on Sr-and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer [J]. J Alloys Comp, 2000, 303 - 304:454-464.
  • 8LIU Z G, CONG L G, HUANG X Q, et al. The conductivity of PrGaO3-based perovskite oxide [J]. J Alloys Comp, 2001,314: 281-285.
  • 9JAIN S R, ADIGA K C, VEMEKER V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures [J]. Combust Flame, 1981, 40(1):71-76.
  • 10HENCH L L, WEST J K. The sol - gel process [J]. Chem Rev, 1990, 90: 33-72.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部