期刊文献+

EDGE-FACE CHROMATIC NUMBER OF 2-CONNECTED PLANE GRAPHS WITH HIGH MAXIMUM DEGREE 被引量:1

EDGE-FACE CHROMATIC NUMBER OF 2-CONNECTED PLANE GRAPHS WITH HIGH MAXIMUM DEGREE
下载PDF
导出
摘要 The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with △(G)≥|G| - 2≥9 has Xef(G) = △(G). The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with △(G)≥|G| - 2≥9 has Xef(G) = △(G).
出处 《Acta Mathematica Scientia》 SCIE CSCD 2006年第3期477-482,共6页 数学物理学报(B辑英文版)
基金 This research is supported by NNSF of China(40301037, 10471131)
关键词 Plane graph edge-face chromatic number edge chromatic number maximum degree Plane graph, edge-face chromatic number, edge chromatic number, maximum degree
  • 相关文献

参考文献11

  • 1Song Huimin, Liu Guizhen. On f-edge cover-coloring of simple graphs. Acta Mathematica Scientia, 2005,25B(1): 145-151
  • 2Liu Guizhen, Dong Henian. Orthogonal (g, f)-factorizations of bipartite graphs. Acta Mathematica Scientia, 2001, 21B(3): 316-322
  • 3Liu Guizhen, Zhang Lanju. Fractional (g, f)-factors of graphs. Acta Mathematica Scientia, 2001, 21B(4):541-545
  • 4Borodin O V. Simultaneous coloring of edges and faces of plane graphs. Discrete Math, 1994, 128:21-33
  • 5Melnikov L S. Problem in recent advances in graph theory. Proc International Symposium, Prague, 1974(Academia Prague 1975), 543
  • 6Sanders D P, Zhao Y. On simultaneous edge-face colorings of plane graphs. Combinatorica, 1997, 17:441-445
  • 7Sanders D P, Zhao Y. Planar graphs of maximum degree seven are class I. J Combin Theory Ser B, 2001,83:201-212
  • 8Waller A O. Simultaneously coloring the edges and faces of plane graphs. Combin Theory Ser B, 1997,69:219-221
  • 9Wang W F, Lih K W. A new proof of Melnikov's conjecture on the edge-face coloring of plane graphs.Discrete Math, 2002, 253:87-95
  • 10Wang Weifan, Lih Ko-Wei. The edge-face choosability of plane graphs. European J Combin, 2004, 25(7):935-948

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部