摘要
The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber(TIRPCF) in Compton scattering have been studied by using the model of the equivalent twin waveguide soliton coupling, dispersion management solitons and effective refractive index. It is shown that the positive dispersion of the cladding waveguide of TIRPCF and the negative dispersion of its core waveguide are quickly increased by the square of the collision non-elastic composition between the electron and photons, and they are lessened by the increase of the electron absorption photon number. Under the one-photon nonlinear Compton scattering, the method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of TIRPCF to be close to zero, and the zero dispersion point quickly shifts to the short wavelength region.
The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber(TIRPCF) in Compton scattering have been studied by using the model of the equivalent twin waveguide soliton coupling, dispersion management solitons and effective refractive index. It is shown that the positive dispersion of the cladding waveguide of TIRPCF and the negative dispersion of its core waveguide are quickly increased by the square of the collision non-elastic composition between the electron and photons, and they are lessened by the increase of the electron absorption photon number. Under the one-photon nonlinear Compton scattering, the method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of TIRPCF to be close to zero, and the zero dispersion point quickly shifts to the short wavelength region.
基金
NaturalScienceBasicResearchProjectforEducationDepartmentofHenanProvince(20011400006)
NaturalScienceFoundationofZhumadianCity(058001)