期刊文献+

基于贝叶斯网络的数据校正方法 被引量:6

A method of data rectification based on Bayesian network
下载PDF
导出
摘要 精确的物料平衡模型是数据校正技术的基础,但实际上,频繁发生的调度事件动态地改变着物料的流向,目前的研究中往往容易被忽视,为此,从工程实践的角度出发提出一种新的处理方法.依据专家经验选择贝叶斯网络关键变量,利用大量的历史数据学习出贝叶斯网络,继而利用贝叶斯网络的诊断功能实现对调度事件的实时跟踪,最后建立精简模型,增强了数据校正的可行性.仿真研究证实了该方法的有效性. A precise mass balance model is the basis of data rectification. However, the streams of material in industrial processes change dynamically due to frequently occurring scheduling events. A new method was proposed to update the mass balance model in view of application. Bayesian network was used, its structure was selected according to experCs experiences and its variables were trained by historical data. Consequently, scheduling events were identified based on diagnostic function of Bayesian network, and an updated simplified model was finally established. In this way, the feasibility of data rectification was enhanced. And simulation results demonstrated the efficiency of the proposed method.
出处 《化工学报》 EI CAS CSCD 北大核心 2006年第6期1385-1389,共5页 CIESC Journal
基金 国家重点基础研究发展规划项目(2002CB312200).~~
关键词 数据校正 贝叶斯网络 调度 物料平衡模型 data rectification Bayesian network scheduling mass balance model
  • 相关文献

参考文献10

  • 1Kuehn D R,Davidson H.Computer control (Ⅱ):Mathematicsof control.Chem.Eng.Prog.,1961,57(6):44-47
  • 2Zhang Puming (张溥明).Researches on modeling and algorithms of data reconciliationfor process industry[D].Zhejiang:Zhejiang University,2001.
  • 3Zhang Puming,Rong Gang,Wang Yin.A new method of redundancy analysis in datareconciliation and its application.Computers & Chemical Engineering,2001,25(7-8):941-949
  • 4Richard E Neapolitan.Learning Bayesian Networks.Upper Saddle River,NJ:Prentice Hall,2003:674
  • 5Judea Pearl,Stuart Russell.Bayesian networks//Michael A Arbib.The Handbook of BrainTheory and Neural Networks.2nd ed.Cambridge,Massachusetts:MIT Press,2002
  • 6Heckerman D,Geiger D,Chicker D.Learning Bayesian networks:the combination of knowledgeand statistical data.Machine Learning,1995,20 (2):197-243
  • 7Heckerman D.A tutorial on learning with Bayesian networks:Technical ReportMSR-TR-95-06[R].MicrosoftResearch,March,1995.http://citeseer.ist.psu.edu/heckerman96tutorial.html
  • 8刘志强.因果关系,贝叶斯网络与认知图(英文)[J].自动化学报,2001,27(4):552-556. 被引量:37
  • 9Cooper G,Herskovits E.A Bayesian method for the induction of probabilistic networksfrom data.Machine Learning,1992,9:309-347
  • 10裴瑞凌,荣冈.炼油过程的智能工厂流程模拟仿真平台[J].化工自动化及仪表,2005,32(2):43-46. 被引量:14

二级参考文献8

共引文献49

同被引文献59

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部