期刊文献+

局部纽立方体网络的容错泛圈性 被引量:2

Fault-tolerant pancyclicity of locally twisted cubes
下载PDF
导出
摘要 n维局部纽立方体网络LTQn是超立方体网络的一种新变型.已经证明:LTQn中就包含任意长度l(4≤l≤2n)的圈.我们改进了这个结果,证明了:只要网络故障点数fv和故障边数fe之和不超过(n-2),LTQn中就包含任意长度l(4≤l≤2n-fv)的圈. An n-dimensional locally twisted cube, LTQn, is a new variant of hypercubes. It has been proved that LTQn contains cycles of all lengths from 4 to 2^n. We improved this result by showing that LTQ. contains cycles of all lengths from 4 to (2^n-fv) provided that the number of faulty vertices and edges is not larger than (n-2), where fv is the number of faulty vertices in LTCn.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2006年第6期607-610,673,共5页 JUSTC
基金 国家自然科学基金(10271114)资助
关键词 局部纽立方体网络 泛圈 容错泛圈 locally twisted cubes cycle pancycle fault-tolerant pancycle
  • 相关文献

参考文献8

  • 1Efe K.A variation on the hypercube with lower diameter[J].IEEE Transactions on Computers,1991,40(11):1 312-1 316.
  • 2Cull P,Larson S M.On generalized twisted cubes[J].Information Processing Letters,1995,55(1):53-55.
  • 3Yang X,Evans D J,Megson G M.The locally twisted cubes[J].International Journal of Computer Mathematics,2005,82(4):401-413.
  • 4Bondy J A.Pancyclic graphs[J] J.Combin.Theory Ser.B,1971,11:80-84.
  • 5Fan J.Hamilton-connectivity and cycle-embedding of Mbius cubes[J].Information Processing Letters,2002,82(3):113-117.
  • 6马美杰,徐俊明.交叉超立方体网络的边泛圈性(英文)[J].中国科学技术大学学报,2005,35(3):329-333. 被引量:8
  • 7Yang M C,Li T K,Tan J J M,et al.Fault-tolerant cycle-emebedding of crossed cubes[J].Information Processing Letters,2003,88(4):149-154.
  • 8Chen Y C,Tsai C H,Hsu L H,et al.On some super fault-tolerant hamiltonian graphs[J].Applied Mathematics and Computation,2004,148(3):729-741.

二级参考文献9

  • 1Efe E. A variation on the hypercube with lower diameter[J]. IEEE Trans. Computers, 1991, 40(11):1312-1316.
  • 2Efe E. The crossed cube architecture for parallel computing[J]. IEEE Trans. Parallel and Distributed Syst. , 1992, 3(5):513-524.
  • 3Kulasinghe P, Betayeb S. Embedding binary trees into crossed cubes[J]. IEEE Trans.Computers, 1995, 44 (7):923-929.
  • 4Chang C P, Sung T Y, Hsu L H. Edge congestion and topological properties of crossed cubes[J]. IEEE Trans. Parallel and Distributed Syst. , 2000, 11(1):64-80.
  • 5Chang C P, Wang J N,Hsu L H. Topological properties of twisted cube[J]. Inform.Sci , 1999, 113:147-167.
  • 6Huang W T, Chuang Y C, Tan J M, Hsu L H. On the fault-tolerant hamiltonicity of faulty crossed cubes[J]. IEICE Trans. on Fundamentals, 2002, E85-A (6): 1359-1370.
  • 7Kulasinghe P D. Connectivity of the crossed cube [A]. Information Processing Letters[C], 1997, 61:221-226.
  • 8Kulasinghe P, Bettayeb S. Multiply-twisted hypercube with five or more dimensions is not vertex-transitive[A]. Information Processing Letters[C], 1995, 53:33-36.
  • 9Yang M C, Li T K, Tan J M, Hsu L H.Fault-tolerant cycle-embedding of crossed cubes[A].Information Processing Letters[C], 2003, 88:149-154.

共引文献7

同被引文献25

  • 1Lin X L, Ni L M. Deadlock-free multicast wormhole routing in multicomputer networks//Proceedings of the 18th Annual International Symposium on Computer Architecture. 1991: 116-125.
  • 2Lin X L, McKinley P K, Ni I. M. Deadlock-free multicast wormhole routing in 2 D mesh multicomputer. IEEE Trans- actions on Parallel and Distributed Systems, 1994, 5 (8): 793-804.
  • 3Bondy J A, Murty U S A. Graph theory with applications. London/New York: MacMilian/Elsevier, 1976.
  • 4Bhuyan L N, Agrawal D P. Generalized hypercube and hy- perbus structures for a computer network. IEEE Transac tions on Computers, 1984, 33(4) : 323-333.
  • 5Leighton F T. Introduction to Parallel Algorithms and Archi tectures: Arrays, Trees, Hypercubes. Morgan Kauffman Publishers, 1992.
  • 6Lee S C, Hook L R. Logic and computer design in nano space. IEEE Transactions on Computers, 2008, 57 ( 7 ) :156-406.
  • 7Yang X F, Evans D J, Megson G M. The locally twisted cubes. International Journal of Computer Mathematics, 2005, 82(4): 401-413.
  • 8Fan J X, Lin X L. The t/k diagnosability of the BC graphs. IEEE Transactions on Computers, 2005, 54(2): 176 184.
  • 9Zhu Q. On conditional diagnosability and reliability of the BC networks. Journal of Supercomputer, 2008, 45(2): 173-184.
  • 10Ma M J, Xu J M. Panconnectivity of locally twisted cubes. Applied Mathematics Letters, 2006, 19(7): 673-677.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部