期刊文献+

分形外推插值算法在电力负荷预测中的应用 被引量:13

Application of Fractal Extrapolation Algorithm in Load Forecasting
下载PDF
导出
摘要 针对传统分形插值难以进行外推的问题,利用分形的自相似性与标度不变性将内区间的分形特性进行延拓,并由此构造了具有外推功能的分形插值算法。该算法利用内区间的迭代函数系和吸引子由特定的初始点出发进行直接搜索,并通过使迭代特定次数后获得的点集与吸引子的均方偏差不断减小的过程来逐步调整初始点的纵坐标值,而均方偏差达到最小化时的纵坐标值即可作为需要外推点的函数值。然后利用电力负荷数据的不同分形特性,将分形外推插值算法应用于电力日负荷、日峰值负荷及年用电量预测中。算例结果表明,分形外推插值算法具有较高的预测精度、较高的计算效率和良好的收敛特性。 For traditional fractal interpolation it is difficult to extrapolate. To solve this problem the fractal property of inner interval is extended outwards by self-similarity and scale invariance of fractal, and on this basis a fractal extrapolation algorithm is proposed. In this algorithm from a certain initial point the direct search is performed by use of iterated function system and attractor of inner interval, and through the process that after specified times of iteration the mean square deviation between obtained point set and attractor is ever-reduced the value of initial point on Y-axis is step-by-step adjusted; when the mean square deviation become the minimum, the corresponding value on Y-axis can be used as the function value of the point to be extrapolated. Then by use of different fractal property of power load data the proposed fractal extrapolation algorithm is applied to the forecasting of daily load, daily peak load and annual power consumption. Case study results show that the proposed algorithm possesses following advantages: more accurate forecasting results, higher calculation efficiency and good convergence property.
出处 《电网技术》 EI CSCD 北大核心 2006年第13期49-54,共6页 Power System Technology
基金 黑龙江省自然科学基金资助项目(E0326)。
关键词 分形 外推插值 负荷预测 迭代函数系 吸引子 电力系统 fractal extrapolation load forecasting iterated function system(IFS) attractor power system
  • 相关文献

参考文献19

二级参考文献64

  • 1董旭柱,王昌长,朱德恒.电力变压器局部放电在线监测研究的现状和趋势(一)[J].变压器,1996,33(1):3-7. 被引量:15
  • 2李后强 汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1997.157-178.
  • 3张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 4沈玲岩 王维俭.计及铁磁非线性的三相变压器励磁涌流仿真研究[J].清华大学学报,1989,29(4):19-23.
  • 5[1]Krivda A. Automated recognition of partial discharge [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(5):796-812.
  • 6[3]谢和平,薛秀谦(Xie Heping,Xue Xiuqian ). 分形应用中的数学基础与方法(The mathematical base and method of fractal application) [M]. 北京:科学出版社(Beijing:Science Press),1998.
  • 7[4]Satish L, Zaengl W S. Can fractal features be used for recognizing 3-d partial discharge patterns? [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(3):352-359.
  • 8[5]Krivda A, Gulski E. The use of fractal features for recognition of 3-D discharge patterns[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(5):889-892.
  • 9Jacquin A E. Image Coding Based on a Fractal Theory of Contractive Image Transformation. IEEE Tran. on IP. 1992, (1) : 18~30.
  • 10Monro D M,Dudbridge F. Fractal Block Coding of Images. Electronics Letters, 1992,28 ( 11 ) : 1053 ~ 1055.

共引文献305

同被引文献147

引证文献13

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部