期刊文献+

用高光谱植被指数估算水稻乳熟后叶片和穗的色素含量 被引量:16

Estimating Pigment Contents in Leaves and Panicles of Rice after Milky Ripening by Hyperspectral Vegetation Indices
下载PDF
导出
摘要 分析测定了大田条件下2个水稻品种在3个氮素水平下的剑叶和穗从乳熟期至收割的光谱反射率(350~2500nm)及对应剑叶和穗的叶绿素(Chl)、类胡萝卜素(Car)含量,并利用相关分析研究了11个植被指数与剑叶、穗的叶绿素含量之间的关系。mSR705、mND705在试验范围各叶绿素含量水平下,都表现极显著的相关性。mSR705、mND705与叶片、穗叶绿素含量进行线性回归,两者拟合R^2分别为0.9319和0.9488(n=48)。植被指数与类胡萝卜素、Car/Chl间的相关性分析表明,光化学反射指数(PRI)与剑叶、穗Car/Chl都有很好的负相关(R^2=0.7745,n=48),可以用来预测不同植被结构的Car/Chl;R760/R500与剑叶Car/Chl和穗Car含量也具有较好的相关性。结果表明,mSR705、mND705和PRI等指数可用于估算叶片、穗的色素含量,作为水稻成熟度的监测指标。 A field experiment was carried out to investigate the relationships between the hyperspectral reflectance and pigment (chlorophyll a, b and carotenoids) contents in flag leaf and panicle of two rice cultivars under three nitrogen levels from milky to harvest. Eleven vegetation indices were correlated with the pigment contents in flag leaves and panicles. As a result, the mSR705 and mND705 indices were significantly related to the chlorophyll contents, with R^2=0. 9319 (n= 48) for leaves and R^2 =0. 9488(n=48) for panicles, respectively. Photochemical reflectance index (PRI) was negatively significantly correlated with the Car/Chl ratio in both flag leaves and panicles (R^2 =0. 7745 ,n=48), indicating that PRI could be used to predict Car/Chl across different vegetation structures. R760/R500 was also significantly (P= 0.05) correlated with Car/Chl in leaves, and carotenoids contents in panicles. It was suggested that mSR705, mND705 and PRI could be used to estimate pigment contents in leaves or panicles of rice, and applied as spectral parameters in rice maturation monitoring.
出处 《中国水稻科学》 CAS CSCD 北大核心 2006年第4期434-439,共6页 Chinese Journal of Rice Science
基金 国家自然科学基金资助项目(40271076) 国家863计划资助项目(2002AA243012)
关键词 水稻 植被指数 叶绿素含量 类胡萝卜素含量 成熟度 rice vegetation indices chlorophyll content carotenoid content maturation
  • 相关文献

参考文献19

  • 1Blackburn G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evalution of some hyperspectral approaches. Remote Sens Environ, 1998, 66: 273-285.
  • 2Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+h and total carotenoid content in Eucalyptus leaves. Remote Sens Environ, 1998, 66 : 111-121.
  • 3Daughtry C S T, Wahhall C L, Kim M S. Estimating corn foliar chlorophyll content from leaf and canopy reflectance. Remote Sens Environ, 2000, 74: 229-239.
  • 4Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337-354.
  • 5Card D H, Peterson P A, Matson P A, et al. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sens Environ, 1988, 26:123-147.
  • 6Dart B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves, Int J Remote Sens, 1999, 20(14)2741-2759.
  • 7Blackburn G A. Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves.Remote Sens Environ, 1999, 70: 224-237.
  • 8唐延林,黄敬峰,王人潮.水稻不同发育时期高光谱与叶绿素和类胡萝卜素的变化规律[J].中国水稻科学,2004,18(1):59-66. 被引量:111
  • 9唐延林,黄敬峰,王人潮,王福民.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171. 被引量:27
  • 10薛利红,曹卫星,罗卫红.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,2005,9(1):100-105. 被引量:46

二级参考文献28

  • 1杨星卫,薛正平,陆贤.水稻遥感动力估产模拟初探[J].遥感信息,1995,17(1):19-22. 被引量:5
  • 2王延颐,高庆芳.稻田光谱与水稻长势及产量结构要素关系的研究[J].国土资源遥感,1996,8(1):51-55. 被引量:14
  • 3王延颐.植被指数与水稻长势及产量结构要素关系的研究[J].国土资源遥感,1996,8(1):56-59. 被引量:17
  • 4Clevers J G P W. A Simplified Approach for Yield Prediction of Sugar Beet Based on Optical Remote Sensing Data[J]. Remote Sensing of Environment, 1997, 61:221-228.
  • 5Pearson R L, Miller D L. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-grass Prairie[A]. Pawnee National Grasslands[C]. Colorado. Ann Arbor. MI: ERIM. 1972, 1357-1381.
  • 6Rouse J W, Haas R H, Schell J A, et al. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation[R]. NASA/GSFC, Type III, Final Report, Greenbelt, MD, USA, 1974,1-371.
  • 7Richardson A J, Wiegand C L. Distinguishing Vegetation from Soil Background Information[J]. Photogrammetric Engineering and Remote Sensing, 1977. 43: 1541-1552.
  • 8Jordan C F. Derivation of Leaf Area Index from Quality of Light on the Forest Floor [J]. Ecology, 1969, 50:663-666.
  • 9Huete A R. A Soil-adjusted Vegetation Index (SAVI)[J]. Remote Sensing of Environment, 1988, 25: 295-309.
  • 10Reujean J L, Breon F M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements[J]. Remote Sensing of Environment, 1995, 51: 375-384.

共引文献220

同被引文献335

引证文献16

二级引证文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部