摘要
首先提出一组基函数向量,它具有以下特定的性质:BB(0)T=(0.0,1.0,0.0,0.0),BB(1)T=(0.0,0.0,1.0,0.0)BB'(0)T=(-0.5,0.0,0.5,0.0),BB'(1)T=(0.0,-0.5,0.0,0.5)BB″(0)T=-(1.0,-2.0,1,0,0.0),BB″(1)T=(0.0,1.0,-2.0.1.0)。进而研究了以此函数向量的张量积形式定义的有理样条曲面。并得以下结论:(1)插值性;(2)C2连续性;(3)局部性和可调性。文中还分析了“权”的作用,并指出它与三次B-样条的类似性。
We first present a vector of function basis BB (t) that satisfied BB(0)T=(0. 0,1. 0,0. 0,0. 0), BB(1)T= (0. 0,0. 0, 1. 0,0. 0) BB' (0)T= (-0. 5,0. 0,0. 5,0. 0), BB'(1)T=(0. 0, -0. 5,0. 0,0. 5) BB'(0)T= (1. 0. -2. 0,1. 0,0. 0), BB'(1)T=(0. 0,1. 0, -2.0,1. 0) Secondly we discuss the rational surface defined in tension-product form using above function vector BB (t). The interpolation surface implies the following results: (1) The surface interpolates control points; (2) It is second order parametrically continuous;(3) It is local and can be adjusted by weights. The effect of weights is also analysed and has similar result as bicubic rational B-spline surface.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
1996年第3期147-151,共5页
Journal of National University of Defense Technology
基金
CAD/CG国家重点实验室资助