期刊文献+

近红外光谱法预测烟气总粒相物中的烟碱含量 被引量:15

Prediction of nicotine in total particulate matter by near infrared spectroscopy
下载PDF
导出
摘要 采用近红外(NIR)光谱技术直接扫描烟叶粉末,建立了预测烟气总粒相物中烟碱含量的数学模型。该模型的内部验证决定系数(R2)为86.57,均方差(RMSECV)为0.385;外部验证的决定系数(R2)为81.32,均方差(RMSEP)为0.398,近红外预测值与标准测定值的平均相对偏差为8.89%。通过配对t-检验,该方法与标准方法测定的效果无显著性差异。该方法精密度高,可用于烟气总粒相物中烟碱含量的快速预测。 A mathematical model of nicotine in total particulate matter was established by scanning tobacco powder with FT-NIR spectrometry. The determination coefficient(R^2) was 86.57, and the Root Mean Square Error of Cross Validation(RMSECV) was 0.385 in cross validation. The determination coefficient(R2) was 81.32,and the Root Mean Square Error of Prediction (RMSEP) was 0.398 in test set validation. It has been validated that the average relative error between NIR-predicted results and the standard-determinated results was 8.89% .By statistical significance test,the results of prediction were compared with those of standard methods with no significant difference at 0.05 level. NIR analysis has advantages of rapidity and precision, and can be applied for rapid determination of nicotine in total particulate matter.
出处 《中国烟草科学》 CSCD 2006年第2期12-13,共2页 Chinese Tobacco Science
关键词 近红外光谱 总粒相物 烟碱 near infrared spectroscopy total particulate matter nicotine
  • 相关文献

参考文献7

二级参考文献17

  • 1GB 2091—80.磷酸[S].[S].,..
  • 2GB2091-80.磷酸[S].[S].,..
  • 3.中华人民共和国烟草行业标准.烟草及烟草制品 试样的制备和水分测定[S].YC/T 31-1996[M].北京:中国标准出版社,1996..
  • 4.中华人民共和国烟草行业标准.烟草及烟草制品 镁的测定[S].YC/T175-2003[M].北京:中国标准出版社,2003..
  • 5国家烟草专卖局编.YC/T29-1996 卷烟用常规分析用吸烟机测定总粒相物和焦油[Z].北京:国家烟草专卖局发布,1996..
  • 6国家烟草专卖局编.YC/T8-93 卷烟烟气总粒相物水分和烟碱的测定气相色谱法[Z].北京:国家烟草专卖局发布,1993..
  • 7国家烟草专卖局编.YC/T30-1996 卷烟烟气气相中一氧化碳的测定非散射红外法[Z].北京:国家烟草专卖局发布,1996..
  • 8Edited by Thermo Nicolet Corporation. TQ Analyst User's Guid, Madison:Thermo Nicolet Corporation, 2003: 153~159.
  • 9Savitzky A, Golay M J E. Anal. Chem., 1964, 36: 1627.
  • 10Edited by Infometrix Inc.. Multivariate Data Analysis, Woodinville:Infometrix Inc., 2003: 5, 24.

共引文献238

同被引文献345

引证文献15

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部