期刊文献+

基于一种改进的BP神经网络光伏电池建模 被引量:12

Modeling of Photovoltaic-Array Based on Improved BP Neural Networks Identification
下载PDF
导出
摘要 由于光伏电池具有高度非线性特性,难以建模,而传统的数学模型难以满足光伏控制系统设计和应用的要求。该文利用神经网络具有逼近任意复杂非线性函数的能力,将神经网络技术应用到光伏阵的建模中,避开了该模块内部的复杂性。模型以太阳能日照、温度以及负载电压作为神经网络辨识模型的输入量,光伏阵输出电流为输出量,采用改进型BP算法,建立了光伏电池的动态响应模型,然后预测了最大功率点。文中给出模型的结构,训练步骤和仿真结果。仿真结果表明,方法可行,建立的模型精度较高,从而为设计光伏实时控制系统奠定了基础。 For the serious complexity of photovoltaic array (PV), modeling of it is very difficult and the existing models are too complicated to be applied to designing and controlling the system, especially to on - line controlling. In this paper, we try to establish a voltage and current model of PV array by using neural networks identification technique. The temperature, radiation and voltage of the solar cells are taken as the input and the current as the output of the neural networks model. In this way, we can avoid the internal complexity of PV module. The 595 groups experimental data are used, and the structure and the novel BP algorithm of neural networks identification system are given. The validity and accuracy of the model are proved by the simulation results. The neural networks modeling makes it possible to design on - line controller of PV system.
出处 《计算机仿真》 CSCD 2006年第7期228-230,290,共4页 Computer Simulation
关键词 光伏电池 神经网络 建模 Photovohaic array Neural network Modeling
  • 相关文献

参考文献7

  • 1A Al-Amoudi and L Zhang.Application of radial basis function networks for solar-array modelling and maximum power-point prediction[J].Generation,Transmission and Distribution,IEE Proceedings-,2000,147(5):310-316.
  • 2Y H MMASHAL,A M SHAIIAI',M MANSOUR and A A ELSATTAR.A photovoltaic maximum power tracking scheme using neural networks[J].Proceedings of the 3rd IEEE-CCA,1994,1:160-172.
  • 3T HIYAMA.Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control[J].IEEE Trans,Energy Conv.,199 5,10,(2):360 367.
  • 4T HIYAMA.Evaluation of neural network based real time maximum power tracking controller for PV system[J].IEEE Trans.Energy Conv.,1995,10.(2):543-548.
  • 5T HIYAMA.Neural network based estimation of maximum power generation form PV module using environmental information[J].IEEE Trans.Energy Conv.,1997,12,(31):241 247.
  • 6卫东,曹广益,朱新坚.基于神经网络辨识的质子交换膜燃料电池建模[J].系统仿真学报,2003,15(6):817-819. 被引量:7
  • 7闻新 周露 王丹力 熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2002..

二级参考文献5

  • 1楼顺天.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,1998.98-135.
  • 2K.S Narendra, K Parthasarthy. Identification and control of dynamical systems using neural networks[J]. IEEE Trans. Neural Networks 1, 1990, 4-27.
  • 3Andrew Rowe, Xianguo Li. Mathematical modeling of proton exchange membrane fuel cells[J]. Journal of Power Sources 102,2001, 82-96.
  • 4Kiuang-Hua Fuh, shuh-Bin Wang. Force modeling and forecasting in creep feed grinding using improved BP neural networks[J]. Int. J.Mach. Tools Manufact. 1997, 37(8): 1167-1178.
  • 5Pramond Gupta, Naresh K.Sinha An improved approach for nonlinear system identification using neural networks[J]. Journal of Franklin Institute 336, 1999, 721-734.

共引文献86

同被引文献154

引证文献12

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部