期刊文献+

基于步态序列图像的身份确认 被引量:1

Human Identification Based on Gait Sequences
下载PDF
导出
摘要 为了利用HMM抽取的步态序列的动态特征来进行身份确认,首先提出一种改进的角度向量用来表征二值化的步态序列图像,以便将每幅图像转化为1维向量,然后再以此作为特征向量,对每个人物建立并训练HMM模型,用于确定人物身份。这种改进的角度向量由于具有较强的抗噪性和方便的尺度伸缩性能,因此既适用于分割质量较差的图像,又能减小行走方向和距离的影响。实验表明,这种HMM不仅能较好地模拟步态的动态特征,还能描述序列图像间的联系,而且算法执行速度快,从输入原始数据到输出识别结果所需时间不超过2min,能满足实时要求。在Soton和NLPR数据库上进行的实验,分别获得了100%和85%的识别率,证明该方法是有效的。 This paper explores the dynamic feature of human gait extracted by hidden Markov model(HMM) , which is used for identifying people. At first, an improved angular vector representation is proposed for blnarized human images in a gait sequence so that every image is turned into a one-dimension vector. Then these vectors act as feature vectors to build and train HMMs which are the final identifying tools for each person based on input gait sequences. The improved angular vector is equipped with better robustness against segment errors, so it is suitable for imperfectly segmented silhouettes. It is also easy to scale up or down, thus scarcely vulnerable to the change of walking direction and distance from data-collecting camera. HMM models not only the dynamic characteristic of gait but also the relation between images in the same sequence. Besides, it can guarantee a high-speed operation which carries out the whole process within 2min. The experiments on Soton and NLPR database yield encouraging correct identifying rate of 100% and 85% , which demonstrates the effectiveness of this method.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第7期943-948,共6页 Journal of Image and Graphics
基金 教育部高校博士点基金项目(20020358033)
关键词 生物特征识别 步态序列 改进的角度向量 隐马尔科夫模型 biometrics, gait sequence, improved angular vector, HMM
  • 相关文献

参考文献12

  • 1新兴的步态识别技术[J].中国安防产品信息,2003,11(6):43-43. 被引量:2
  • 2Lee L,Grimson W E L.Gait analysis for recognition and classification[A].In:Proceedings of the Fifth IEEE Internatinal Conference on Automatic Face and Gesture Recognition[C],Washington,DC,USA,2002:148 ~ 155.
  • 3Cunado D,Nixon M,Carter J.Using gait as a biometric via phaseweighted magnitude spectra[A].In:Proceedings of International Conference on Audio-and Video-based Biometric Person Authentication[C],Crans-Montana,Switzerland,1997:95 ~ 102.
  • 4Little J,Boyd J.Recognizing people by their gait:The shape of motion[J].Journal of Computer Vision Research,1998,1 (2):2~32.
  • 5Hayfron-Acquah J,Nixon M,Carter J.Automatic gait recognition by symmetry analysis[A].In:Proceedings of International Conference on Audio-and Video-based Biometric Person Authentication[C],Halmstad,Sweden,2001:2175 ~ 2183.
  • 6Cutler R,Benabdelkader C,Davis L S.Motion based recognition of people in eigengait space[A].In:Proceedings of the Fifth IEEE Internatinal Conference on Automatic Face and Gesture Recognition[C],Washington,DC,USA,2002:254 ~ 259.
  • 7Wang L,Tan T N,Hu W M,et al.Automatic gait recognition based on statistical shape analysis[J].IEEE Transactions on Image Processing,2003,12(9):1120 ~ 1131.
  • 8Shulter J,Nixon M,Harris C.Statistical gait description via temporal moments[A].In:Processings of IEEE Southwest Symposium on Image Analysis and International[C],Austin,Texas,USA,2000:291 ~ 295.
  • 9Foster J,Nixon M,Prugel-Bennett A.New area-based metrics for gait recognition[A].In:Proceedings of International Conference on Audio-and Video-based Biometric Person Authentication[C],Halmstad,Sweden,2001:312 ~ 317.
  • 10Boulgouris N V,Plataniotis K N,Hatzinakos D.Gait analysis and recognition using angular transforms[A].In:Proceedings of Canadian Conference on Electrical and Computer Engineering[C],Niagara,Canada,2004:1317 ~ 1370.

共引文献1

同被引文献22

  • 1田光见,赵荣椿.基于连续隐马尔可夫模型的步态识别[J].中国图象图形学报,2006,11(6):867-871. 被引量:6
  • 2鲁继文,张二虎,薛延学.基于独立成分分析和信息融合的步态识别[J].模式识别与人工智能,2007,20(3):365-370. 被引量:6
  • 3Boulgouris N V, Plataniotis K N, Hatzinakos D. Gait recognition using linear time normalization [ J ] . Pattern Recognition, 2006, 39(5) : 969-979.
  • 4Sminchisescu C, Kanaujia A, Metaxas D. Conditional models for contextual human motion recognition [ J ]. Computer Vision and Image Understanding, 2006, 104 (2-3) : 210-220.
  • 5McCallum A, Freitag D, Pereira F. Maximum entropy Markov models for information extraction and segmentation [ A]. In: Proceedings of 17th International Conference on Machine Learning [ C ], San Francisco, USA, 2000: 591-595.
  • 6Jiang Wei, Wang Xiao-long, Guan Yi. Improving sequence tagging using machine-learning techniques [ A ]. In: Proceedings of the 5th International Conference on Machine Learning and Cybernetics [ C ] , Dalian, China, 2006: 2636-2641.
  • 7Kuo H-K J, Gao Yu-qing. Maximum entropy direct models for speech recognition [ J ] Language Processing IEEE 2006 Transactions on Audio, Speech, and 14(3): 873-881.
  • 8Sun Guang-lu, Guan Yi, Wang Xiao-long, et al. A maximum entropy Markov model for chunking [ A ] . In: Proceedings of the 5th International Conference on Machine Learning and Cybernetics [ C ], Guangzhou, China, 2005: 3761-3765.
  • 9Goodman J. Sequential conditional generalized iterative scaling [ A ]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics [ C ], Philadelphia, USA, 2002 : 9-16.
  • 10Yu Shi-qi, Tan Dao-liang, Tan Tie-niu. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition [ A] . In: Proceedings of the 18th International Conference on Pattern Recognition [ C ], HongKong, China, 2006 : 441 - 444.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部