期刊文献+

求解非线性约束优化问题改进的粒子群算法 被引量:1

An Improved Particle Swarm Optimization to Settle Constrained Optimal Nonlinear Problem
下载PDF
导出
摘要 采用粒子群算法处理约束优化问题时,由于约束条件使得解空间成为非凸集合,粒子容易陷入局部最优,因此在搜索过程的不同阶段,提出变步长因子的粒子群算法,实验证明改进的算法是可行的,且在精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等其它一些算法. In this paper, the particle swarm optimaziton handles are used to deal with constraint optimal problems. Owing to constraint conditions, searching space is not bulgy and particles are easy to be limited to local optimal. Therefore, we advance to the PSO of searching different scale gene in different phases during the searching process. Nttmefical results show that the improved PSO is feasible and can get more precise results than particle swarm optimization by using penalty functions and genetic algorithm and other op optimization algorithms.
出处 《佳木斯大学学报(自然科学版)》 CAS 2006年第3期340-342,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 粒子群算法 动态罚函数 变步长因子 particle swarm algorithm dynamic penalty function scale gene
  • 相关文献

参考文献5

  • 1Fogel D B.An Introduction to Simulated Evolutionary Optimization[J].IEEE Trans on Neural Networks,1994;5(1):3-14.
  • 2Kennedy J,Eberhart R.Particle Swarm Optimization[A].Proc of the IEEE Int Conf on Neural Network[C].Perth,1995:1942-1948.
  • 3Shi Y,Eberhart R.Empirical study of particle swarm optimization[A].Pro of Congress on Evolutionary Computation[C].Washington,1999:1945-1950.
  • 4潘正君,康立山.演化计算[M].北京:北京清华大学出版社,2001.
  • 5张喆,薛任.微粒群算法在非线性约束优化中的应用[J].计算机工程与应用,2004,40(25):90-92. 被引量:8

二级参考文献8

  • 1Fogel D B.An Introduction to Simulated Evolutionary Optimization[J].IEEE Trans on Neural Networks, 1994;5 (1) :3~14
  • 2Joines J A,Houck R C.On the Use of Non-stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems withGA's[C].In:Proc IEEE Int Conf of Evol Comp,1994:579~585
  • 3Kennedy J,Eberhart R C.Particule Swarm Optimization[C].In:Proc IEEE Int Conf of Neural Networks ,Piscataway ,NJ, 1995: 1942~1948
  • 4Parsopoulos K E.Stretching technique for Obtaining Global Minimizes Through Particle Swarm Optimization[C].In:Proc Particle workshop,Indianpolis ( IN ), USA, 2001: 22~29
  • 5Parsopoulos K E.Initializing the Particle Swarm Optimizer Using the Nonlinear Simplex Method[C].In:Advances in Intelligent Systems,Fuzzy Systems,Evolutionary Computation. WSEAS Press,2002:216~221
  • 6Kennedy J ,Eberhart R C.Swarm Intelligence[M].Morgan Kaufmann,2001
  • 7Parsopoulos K E,Parsopoulos M N.Modification of the particle Swarm Optimizer for Locating All the Global Minima,Artificial Neural Networks and Genetic Algorithm[M].Springer,2001:324~327
  • 8谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422

共引文献7

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部