期刊文献+

共形几何代数与几何不变量的代数运算 被引量:20

Conformal Geometric Algebra and Algebraic Manipulations of Geometric Invariants
下载PDF
导出
摘要 几何不变量的使用是计算机视觉和图形学的一个重要手段.发现一个不变量后,如何找到它与其他不变量的关系,是实际应用中的一个重要问题,这种关系的探讨主要依靠在不变量层次上的代数运算.文中介绍了共形几何代数中的基本、高级和有理不变量如何在几何问题中自然出现,它们之间如何进行代数运算,以及如何通过不变量的化简,自然地得到几何条件的充分必要化和几何定理的完全化.几何定理的机器证明作为几何定理完全化的副产品,被发展成几何定理的关系定量化,这种量化的几何还原就是几何定理的自然推广.几何不变量之间的几何关系的计算是这些技术的一个具体应用. Geometric invariance is an important approach in computer vision and graphics. When a new invariant is found, an important problem is to find its “geometric” relationship (relationship with geometric meaning) with basic invariants. The discovery of this relationship is mainly based on algebraic manipulations of invariants. We show how the basic, advanced and rational invariants in conformal geometric algebra (CGA) appear naturally in geometric problems, how they are manipulated algebraically, and how to obtain the sufficient and necessary conditions and the complete form of geometric theorems by means of invariants manipulation. Automated geometric theorem proving, as a byproduct of the completion of geometric theorems, is further developed into automated quantitative description of geometric relations. The recovery of the geometric meaning of this quantitative description leads to a natural extension of the geometric theorem. Computing the geometric relationship among geometric invariants is a direct application of these techniques.
作者 李洪波
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第7期902-911,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(10471143) 国家重点基础研究发展规划项目(2004CB318001)
关键词 共形几何代数 零括号代数 几何不变量 几何计算 几何还原 conformal geometric algebra null Bracket algebra geometric invariance geometric computing geometric recovery
  • 相关文献

参考文献16

  • 1Hartley R,Zissermann A.Multiple view geometry in computer vision[M].Cambridge:Cambridge University Press,2000
  • 2Sommer G.Geometric computing with clifford algebras[M].Heidelberg:Springer,2001
  • 3Fontijne D,Dorst L.Modeling 3D Euclidean geometryperformance and elegance of five models of 3D Euclidean geometry in a ray tracing application[J].IEEE Computer Graphics and Applications,2003,23(2):68-78
  • 4Hildenbrand D,Fontijne D,Perwass C.Geometric algebra and its application to computer graphics[M].Tutorial 3 of Eurographics 2004,Grenoble:INRIA and Eurographics Association,2004
  • 5李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393. 被引量:36
  • 6Sturmfels B.Algorithms in invariant theory[M].Wien:Springer,1993
  • 7White N.Invariant methods in discrete and computational geometry[M].Dordrecht:Kluwer,1994
  • 8Li H.Automated theorem proving in the homogeneous model with clifford bracket algebra[C] //Dorst L,et al.Proceedings of Applications of Geometric Algebra in Computer Science and Engineering,Birkhauser,Boston,2002:69-78
  • 9Li H.Clifford algebras and geometric computation[M].//Chen F,Wang D,Geometric Computation.Singapore:World Scientific,2004:221-247
  • 10Li H.Automated geometric theorem proving,Clifford bracket algebra and Clifford expansions[C] //Qian T,et al.Proceedings of Trends in Mathematics:Advances in Analysis and Geometry,Birkhauser Basel,2004:345-363

二级参考文献30

  • 1Havel T. Geometric Algebra and Mbius Sphere Geometry as a Basis for Euclidean Invariant Theory[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 245~256.
  • 2Mourrain B, Stolfi. Computational Symbolic Geometry[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 107~140.
  • 3Hestenes D. The design of linear algebra and geometry[J]. Acta Applicandae Mathematicae, 1991, 23: 65~93.
  • 4Hestenes D. Invariant body kinematics II: Reaching and neurogeometry[J]. Neural Networks, 1994, 7(1): 79~88.
  • 5White N. A tutorial on Grassmann-Cayley Algebra[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 93~106.
  • 6Hestenes D. New Foundations for Classical Mechanics[M]. Dordrecht: Kluwer, 1987.
  • 7Li Hongbo. Clifford Algebras and Geometric Computation[M]. Chen F, Wang D eds., In: Geometric Computation, Singapore: World Scientific, 2004. 221~247.
  • 8Sturmfels B. Algorithms in Invariant Theory[M]. Wien: Springer, 1993.
  • 9Li Hongbo, Hestenes D, Rockwood A. Spherical Conformal Geometry with Geometric Algebra[M]. Sommer G ed., In: Geometric Computing with Clifford Algebras, Berlin Heidelberg: Springer, 2001. 61~76.
  • 10Li Hongbo, Hestenes D, Rockwood A. A Universal Model for Conformal Geometries of Euclidean, Spherical and Double-Hyperbolic Spaces[M]. Sommer G ed., In: Geometric Computing with Clifford Algebras, Berlin Heidelberg: Springer, 2001. 77~104.

共引文献35

同被引文献208

引证文献20

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部