期刊文献+

基于BP神经网络的电机转矩软测量研究

Motor Electromagnetic Torque Measuring by Soft-sensing Technology Based on BP Neural Networks
下载PDF
导出
摘要 本文将在化工领域广泛使用的软测量技术应用来进行异步电机转矩测量。根据感应电动机的数学模型,提出了仅用葶于神经网络的电机定子电流的电磁转矩辨识方法,实现异步电机转矩的软测量。用改进的BP算法对神经网络进行学习和训练,构建了适合电机转矩观测的多层前馈神经网络,仿真研究表明:基于神经网络的电机转矩辨识模型具有良好的性能。 This paper uses soft-sensing technology, which has been used broadly in chemical industry, to measure the torque of asynchronous motor. According to the fundamental equations of induction motor, a electromagnetic torque identification method that only uses stator current based on neural networks is set up, and the torque of asynchronous machine is measured by soft-sensing technology. The structure of multi-layer feed-forward neural networks that is fit for electromagnetic torque measure is founded and trained with Back Propagation Levenberg-Marquardt's method. The simulation results show that the neural network - based identification model of motor electromagnetic torque is of better Performance.
作者 蔡华斌 肖建
出处 《自动化信息》 2006年第7期44-45,36,共3页 Automation Information
关键词 软测量技术 软测量模型 神经网络 仿真 Soft-sensing Technology Soft-sensing Model Neural Networks Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部