期刊文献+

光子晶体光纤拉曼激光器研究 被引量:2

Research on the Raman photonic crystal fiber laser
下载PDF
导出
摘要 利用100 m非线性光子晶体光纤,以光纤光栅对作为谐振腔,研制成功了低阈值光子晶体光纤拉曼激光器.该光子晶体光纤拉曼激光器的阈值为2 W,在抽运功率6.2 W时,得到最大功率为1.8 W,波长为1 115.9 nm的连续拉曼激光输出,拉曼半峰全宽为1.39 nm,对应光-光转化效率29%,斜率效率41%.且在低功率连续光泵浦下观察到5级拉曼荧光. Photonic crystal fibers (PCFs) can be designed with a much larger nonlinear coefficient by reducing mode area through its air hole microstructure region, thus leading to orders of magnitude higher Raman gain. So PCF Raman laser (PCF-RL) can greatly reduce cavity length while maintaining a low-pump-threshold. A low-pump- threshold photonic crystal fiber Raman laser was demonstrated, with 100 m nonlinear photonic crystal (Crystal Fiber A/S, NL-1550) fiber as gain medium. Both ends of the PCF were spliced to standard single mode fiber using a piece of tapered fiber to provide matched mode field diameter. The cavity utilized a pair of fiber Bragg gratings ( FBGs) at 1115.7 nm as resonator. The FBG at the input end has a reflectivity larger than 99.9% and spectral width of ~0. 26 nm, while the other at the output end is of 92% reflectivity and ~0. 1 nm spectral width. A 20W, CW ytterbium fiber laser (IPG Model PYL-20M) with a single-mode randomly polarized 1070 nm output was used as the pump. The collimated laser beam emerging from the pumping source was coupled into the input FBG with a coupling efficiency of 46%. The Stokes spectral evolution was studied. The luminescence spectrum of the fifth order Stokes was observed at a low continuous wave pump power of 0. 046W. The peak wavelength of each order stokes luminescence was 1 124.1 nm (S1), 1 187. 3 nm (S2), 1 259.9 nm (S3), 1 323.9 nm (S4), 1 400.5 nm (S5) , corresponding respctively to a frequency shift X1 =444.6 cm^-1 , X2 =473.3 cm^-1 , X3 =485.8 cm^-1 , X4 = 383.2 cm^-1 , X5 = 413.4 cm^-1. When reaching the threshold pump power of 2 W, the Raman luminescence disappeared and the laser of 1 115.9 nm was emitted. Increasing the pump power, the pump translated to Raman laser and the central wavelength of the laser was basically stable, with the spectrum width gradually broadening. The maximum output power was 1.8 W at the incident pump power of 6. 2 W. Consequently, the optical conversion efficiency and the maximum slope efficiency were 29% and 41% respectively. The FWHM of lasing light was 1.39 nm. From ASE measurements, the peak Raman gain was found to be at 1 124.6 nm rather than 1 115.9nm. When the incident pump power was over 6.67 W, the 1 124.6nm Stokes at the peak Raman gain would be generated. Because the cavity gain at this wavelength is higher than the cavity loss beyond this pump power level, so the 1 124.6 nm lasing light would take part in the mode competition. We believe that, with a pair of specially designed FBG at the peak Raman gain region, lower threshold pump power and higher output power would be achieved.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2006年第3期263-267,共5页 Journal of Shenzhen University(Science and Engineering)
基金 广东省自然科学基金资助项目(011736)
关键词 光子晶体光纤 拉曼光纤激光器 光纤光栅 多级Stokes光 拉曼频移 photonic crystal fiber Raman fiber laser fiber Bragg grating higher-order Stokes Raman frequency shift
  • 相关文献

参考文献13

二级参考文献62

  • 1[1]Birks T A,Knight J C,Russell P st J.Endlessly single-mode photonic crystal fiber.Opt Lett,1997,22(13):961~963
  • 2[2]Brodenck N G R,Monro T M,Bennell P J.Nonliearity in holey optical fibers:measurement and future opportunities.Opt Lett,1999,24(20):1395~1397
  • 3[3]Knight J C,Arnaga J,Birks T A.Anomalous dispersion in photonic crysital fiber.IEEE Photonics Technology Letters,2000,12(7):807~809
  • 4[4]Ortigosa-Blanch A,Knight J C,Wadsworth W J. Highly birefnngent photonic crystal fibers.Opt Lett,2000,25(18):1325~1327
  • 5[7]Yamamoto T,Kuboya H,Kawanishi S.Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber.Optics Express, 2003,11(13): 1537~1540
  • 6[8]Murray K R,Michael K S S.Tunable infrared genneration using a femtosecond 250 kHz Ti∶Sapphire regenerative amplifier.IEEE J Quantum Electron,1996,32(8): 1273~1276
  • 7Knight J C, Arriaga J,Birks T A,et al.Anomalous dispersion in photonic crystal fiber.IEEE Photonics Technolgy Letters,2000,12(7) :807 -809.
  • 8Randa J K, Windeler R S, Stentz A J, et al. Visible continuum generation in air-silica micros-ructure optical fibers with anomalous dispersion at 800 nm. Opt Lett,2000,2,5(1):25-27.
  • 9Coen S, Bainer Leonhardt, Harvey J D,et al. White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber. Opt Lett,2001,26(17) :1356-1358.
  • 10Provino L, Dudley J M, Mail]otte H, et al. Compact broadband continuum source based on microchip laser pumped microstructured fiber. Electronics Letters, 2001,37(9) :558 -559.

共引文献45

同被引文献26

  • 1闫培光,李乙钢,吕可诚,阮双琛,郭春雨.正常色散区泵浦微结构光纤产生超连续谱研究[J].深圳大学学报(理工版),2006,23(1):21-24. 被引量:1
  • 2闫培光,李乙钢,吕可诚,郭春雨,阮双琛.微结构光纤中高效反Stokes波产生研究[J].深圳大学学报(理工版),2006,23(2):98-101. 被引量:1
  • 3闫培光,阮双琛,郭春雨,于永芹,苏红,刘承香.A Low-Pump-Threshold Photonic Crystal Fibre Raman Laser[J].Chinese Physics Letters,2006,23(11):2972-2973. 被引量:1
  • 4陈玉和,张院生,杨立森,张宝光,陈宝东,陆改玲.用二次干涉法在LiNbO_3:Fe晶体中构造准周期结构光子晶格[J].信息记录材料,2007,8(2):17-20. 被引量:5
  • 5克希耐尔W.固体激光工程[M].北京:科学出版社,2002.40.?A.
  • 6RichardsonDJ BrittonP TavernerD.二极管泵浦高能量、单模调Q光纤激光器[J].量子电子学报,1997,33(23):1955-1956.
  • 7RenaudCC Selvas-AguilarRJ NilssonJ 等.紧凑高能量包层泵浦40 nm可调谐调Q光纤激光器[J].IEEE光电子技术学报,1999,11(8):976-978.
  • 8Renaud C C,Alvarez-Chavez J A,Sahu J K,等.7.7mJ大芯径掺Yb包层泵浦调Q光纤激光器[J].国际激光与光电子学会议CLEO,2001,219(英文版).
  • 9RenaudCC OfferhausHL Alvarez-ChavezA 等.不同高能量设计包层泵浦掺Yb调Q光纤激光器的特性[J].IEEE量子电子学期刊,2001,37(2):199-206.
  • 10Limpert J,Deguil-Robin N,Petit S,等.亚10 ns级调Q光子晶体光纤激光器[J].量子电子和激光科学会议,2005,JWB51:1322-1324(英文版).

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部