摘要
Based on the data of δ^18O in surface snow, snow pits, meltwater and the glacier-fed fiver water at Baishui Glacier No. 1, Mt. Yulong, the isotopic fractionation behaviors in the typical monsoonal temperate glacier system in winter and summer were compared. The results indicate that the isotopic fractionation degree in summer is greater than that in winter, suggesting that the snow/ice melting is more intense in summer. Moreover, whenever it is in winter or summer, from surface snow to meltwater, and to glacier-fed fiver water, the gradient of δ^18O with altitude gradually increases. This shows that the degree of isotopic fractionation gradually strengthens when surface snow is being converted into meltwater and finally into glacial fiver water, which suggests that the influence of post-depositional processes on δ^18O gradient in the monsoonal temperate glacier region differs spatially.
Based on the data of δ^18O in surface snow, snow pits, meltwater and the glacier-fed fiver water at Baishui Glacier No. 1, Mt. Yulong, the isotopic fractionation behaviors in the typical monsoonal temperate glacier system in winter and summer were compared. The results indicate that the isotopic fractionation degree in summer is greater than that in winter, suggesting that the snow/ice melting is more intense in summer. Moreover, whenever it is in winter or summer, from surface snow to meltwater, and to glacier-fed fiver water, the gradient of δ^18O with altitude gradually increases. This shows that the degree of isotopic fractionation gradually strengthens when surface snow is being converted into meltwater and finally into glacial fiver water, which suggests that the influence of post-depositional processes on δ^18O gradient in the monsoonal temperate glacier region differs spatially.
基金
National Natural Science Foundation of China, No.40501014
No.90511007
Talent Culture Project for Special Subject of Glaciology and Geocryology, No.J0130084