期刊文献+

粒子群算法求解边值固定的化工动态过程优化问题 被引量:4

Particle Swarm Optimization for Chemical Dynamic Process Optimization with Fixed Boundary Value
下载PDF
导出
摘要 针对化工过程系统优化中广泛存在着边值固定的动态优化问题,该问题的求解数学上还没有有效的方法,现今的方法之一是将问题转化为多目标优化问题。本文在粒子群优化(PSO)算法的基础上,提出在PSO算法中加入惩罚项,同时对局部极值与全局极值作进一步的调整,使PSO算法适用于求多目标优化问题理想有效解,该算法对多目标问题起到边优化边求理想有效解的功效;即只用一步即可求理想有效解,这使得在求解速度上大为加快。最后将其用于间歇反应器的最佳反应温度边值固定动态优化控制的实际运用中,取得良好效果。 In order to make particle swarm optimization (PSO) apply to multi-objective optimization problem ideal pareto solution (IPS), a penalty term is injected into PSO and makes further adjustment for partial extremum and global extremum based on PSO. This algorithm can solve IPS while optimizing for multi-objective problem, viz. it can solve IPS in just one step and accelerates the speed for solving consumedly. An intermittence reactor dynamic system temperature optimal control with fixed boundary problem is employed for examining the validity of the proposed method. Experimental results show that the method is effective.
出处 《化工自动化及仪表》 EI CAS 2006年第4期18-21,共4页 Control and Instruments in Chemical Industry
基金 国家自然科学基金资助项目(20276063)
关键词 过程优化 边值固定 多目标优化 理想有效解 PSO process optimization fixed boundary multi-objective optimization IPS PSO
  • 相关文献

参考文献9

  • 1RAJESH J,GUPTA K,KUSUMAKAR H S.Dynamic Optimization of Chemical Processes Using Ant Colony Framework[J].Computers and Chemistry,2001,25:583-595.
  • 2JOLY M,PINTO J M.Optimal Control of Product Quality for Batch Nylon-6,6 Autoclaves[J].Chemical Engineering Journal,2004,97 (2-3):87-101.
  • 3张兵,陈德钊,吴晓华.分级优化用于边值固定的化工动态优化问题[J].化工学报,2005,56(7):1276-1280. 被引量:11
  • 4刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 5陈国初,俞金寿.微粒群神经网络在常压塔汽油干点软测量建模中的应用[J].化工自动化及仪表,2005,32(3):25-27. 被引量:6
  • 6COELLO COELLO C A,SALAZAR LECHUGA M.MOPSO:A Proposal for Multiple Objective.Particle Swarm Optimization[C]//In Proc Congress Evolutionary Compution.Honolulu,Hawaii,USA,2002:1051-1056.
  • 7PARSOPOULOS K E,VARAHATIS M N.Particle Swarm Optimization Method in Multi Objective Problems[C]//In Proc of the ACM Symp on Applied Computing 2002 (SAC 2002).New York:ACM Press,2002:603-607.
  • 8HU X,EHERHART R C.Multiobjective Using Dynamic Neighborhood Particle Swarm Optimization[C]//In Proc Congress Evolutionary Computation.Honolulu,Hawaii,USA,2002:1677-1681.
  • 9于利磊,唐文勇,张圣坤,范模.基于理想点法的双目标结构鲁棒设计[J].上海交通大学学报,2003,37(8):1193-1197. 被引量:7

二级参考文献83

  • 1张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 2Taguchi G. Taguchi on robust technology development :bringing quality engineering upstream[M]. New York:ASME Press, 1993.
  • 3Lee K H, Eom I S, Park G J, et al. Robust design for unconstrained optimization problems using Taguchimethod[J]. AIAA Journal, 1996, :34 (5) : 1059- 1063.
  • 4Lee K H, EomI S, Park G J, et al. A study on the robust design for unconstrained optimization problems[J]. Trans KSME ,1994,18(11) :2825-2836.
  • 5Bennett J A, Lust R V. Conservative methods for structural optimization [J]. AIAA Journal, 1990, 28(8):1491-1496.
  • 6Bailing R J, Free J C, Parkinson A R. Condsideration of worst-case manufacturing tolerances in design optimization [J]. J Mech Trans Automat Design Trans ASME,1986,108:438-441.
  • 7袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001..
  • 8Rajesh J, Gupta K, Kusumakar H S. Dynamic optimization of chemical processes using ant colony framework.Computers and Chemistry, 2001, 25: 583-595.
  • 9Roubos J A, de Gooijer C D, van Straten G, van Boxtel A J B. Comparison of optimization methods for fed-batch cultures of hyhridoma cells. Bioprocess Engineering, 1997, 17:99-102.
  • 10Roubos J A, van Straten G, van Boxtel A J B. An evolutionary strategy for fed-batch bioreactor optimization: concepts and performance. Journal of Biotechnology, 1999,67:173-187.

共引文献58

同被引文献95

引证文献4

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部