期刊文献+

基于神经网络的液固挤压工艺参数灵敏性分析 被引量:1

Parameter Sensitivity Analysis for Liquid-solid Extruding Process Based on the Neural Network
下载PDF
导出
摘要 将人工神经网络引入液固挤压工艺参数的灵敏性分析中,对难以建立精确数学模型的液固挤压工艺进行建模,通过非线性网络泛化映射,求解输出变量对输入变量的偏导数,得到了工艺参数在每个样本点处的灵敏度值,从而定量地确定了多个非确定性参数共同作用下的灵敏度指标。结果表明,影响液固挤压工艺的参数中,作用最大的为浸渗时间,其次为浇注温度与模具温度,最小为浸渗压力,这与实际情况相符。 A model for liquid-solid extruding process is established by introducing an artificial neural network into parameter sensitivity analysis during the liquid-solid extruding process. Sensitivity value at per sample point of the processing parameters can be obtained to quantitatively determine the sensitivity index under co-action of several uncertainty parameter conditions by mapping nonlinear network to resolve partial differential coefficient of output via input based on the model. The results show that the influencing orders on liquid-solid extruding process is infiltrating time, and then pouring temperature and mould temperature, and then infiltrating pressure, which are accordant with experimental ones.
机构地区 西北工业大学
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2006年第8期478-480,共3页 Special Casting & Nonferrous Alloys
基金 国家自然科学基金资助项目(50575185) 航空科学基金资助项目(05G53048) 国防预研基金资助项目(51412010304HK0339)
关键词 液固挤压 神经网络 灵敏性 Liquid-solid Extruding Process, Neural Network, Sensitivity
  • 相关文献

参考文献8

  • 1Qi L H. The Influence of Liquid Extrusion on the Microstructure and Properties of an Al-Si Alloy. Materials and Manufacturing Processes, 1998,13(3) :405-413
  • 2Li H J, Qi L H, Han H M, et al. Neural Network Modeling and Optimization of Semi-solid Extrusion for Aluminum Matrix Composites. Journal of Materials Processing Technology, 2004,151 ( 1 - 3 ) : 126 - 132
  • 3罗建.系统灵敏度理论导论.西安:西北工业大学出版社,1990.
  • 4Jaiswal S, Benson E R, Bernard J C, et al. Neural Network Modelling and Sensitivity Analysis of a Mechanical Poultry Catching System. Biosystems Engineering,2005, 92 ( 1 ), :59 - 68
  • 5Sterjovski Z, Nolan D, Carpenter K R ,et al. Artificial Neural Networks for Modelling the Mechanical Properties of Steels in Various Applications.Journal of Materials Processing Technology, 2005, 170 : 536 - 544
  • 6赵启林,吉林.参数灵敏度分析的有限元-神经网络混合法[J].土木工程学报,2004,37(4):60-63. 被引量:6
  • 7Jos'e L Z, Marla P. Numerical Simulation of a Method for Seismic Damage Identification in Buildings. Engineering Structures, 2006, 28:255 -263
  • 8胡守任,沈清,胡德文,等.神经网络应用技术.长沙:国防科技大学出版社,1993.

二级参考文献6

  • 1吕爱钟.巷道围岩参数及地应力可辨识性的探讨[J].岩石力学与工程学报,1988,7(2):155-164.
  • 2Hect-Nielsen R. Theory of the back-propagation, neural network [A]. Pro of the Int Joint Conf on Neural Network, Ⅰ IEEE press [C], New YORK, 1989, 593-611.
  • 3Ledesma A, GENS A. Parameter and variance estimation in geo-technical back analysis using prior information [ J ]. Int Jour for Numer and Analy Methods in Geomech. 1996, 20:119 - 141.
  • 4任青文.非线性有限单元法[M].南京:河海大学出版社,1999.12-23.
  • 5范益群,李锡夔.岩土力学弹塑性模型参数反演中的灵敏度分析[J].岩土工程学报,1998,20(2):15-18. 被引量:12
  • 6李守巨,刘迎曦,王登刚,马龙彪,张军.混凝土重力坝弹性参数识别的灵敏度分析及实例[J].岩土工程学报,2000,22(3):381-383. 被引量:8

共引文献5

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部