期刊文献+

还原温度与SiO_2壳层对Co/SiO_2复合颗粒尺寸和相结构的影响 被引量:2

The effects of reducing temperature and SiO_2 coating layer on nanocomposite Co/SiO_2 particles size and phase structure
下载PDF
导出
摘要 利用非均相沉淀-H2还原方法制得了平均粒径为20-30nm的Co/SiO2纳米复合颗粒。探讨了非均相沉淀-H2还原法的还原温度和SiO2壳层对Co/SiO2纳米复合颗粒尺寸和组织的影响。实验结果表明,在复合颗粒中,非晶SiO2壳层对纳米Co颗粒成功地进行了包覆。纳米尺度的fcc结构芯核Co可以在室温存在,但颗粒尺寸大于某一临界尺寸时,芯核Co将由fcc向hcp相转变。通过试验得出芯核Co由fcc向hcp相转变的临界尺寸,该试验结果和理论数据相吻合。并证明,还原过程中fcc结构Co的出现对应于一个临界温度,当还原温度低于该临界温度时,不能得到fcc结构的Co。 Nanocomposite Co/SiO2 particles that average size is 20- 30nm were obtained by heterogenous precipitation-H2 reducing method. The effects of the reducing temperature and content of surrounding SiO2 on size and phase structure of the nanocomposite Co/SiO2 particles have been investigated. Experimental results showed that the Co nanoparticles were coated effectively by the coating layer SiO2. The core Co of nanosize with face centered cubic (fcc) can be remained in the room temperature. However, if the size of particles is larger than a critical size, the core Co transform from face centered cubic (fcc) to hexagonal closed packed (hcp) structure. By the experiments, the critical size of the core Co from face centered cubic (fcc) to hexagonal closed packed (hcp) structure has been obtained. This result is accordant with that of the reference. Furthermore, the experimental result proved there is a critical temperature for the formation of Co with fee structure and the fee Co structure can not be obtained if the reducing temperature is lower than the critical temperature.
出处 《功能材料》 EI CAS CSCD 北大核心 2006年第8期1345-1347,1351,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50271051)
关键词 非均相沉淀 纳米颗粒 核壳结构 Co/SiO2 heterogenous precipitation nanoparticles core/shell structure Co/SiO2
  • 相关文献

参考文献9

  • 1Dikeakos M, et al. [J]. Mat Res Soc Syrup Proc,2003,734(45) : 1-6.
  • 2Zhong C J,Maye M M.[J]. Sdv Mater, 2001,13:1507-1511.
  • 3Kamata K, Lu Y, Xia Y N. [J]. J Am Chem Soc,2003,125:2384-2385.
  • 4Moteiro O C, Esteves A C C, Trindade T. [J]. Chem Mater, 2002,14:2900-2904.
  • 5Joachim W, et al.[J]. Magn Mater, 2002,4:252.
  • 6Kitakami O, Sato H, Shimada Y. [J]. Phys Rev B,1997, 56:13849-13854.
  • 7Lu Xuegang,Liang Gongying,Sun Zhanbo,et al. [J]. Materials Science and Engineering B,2005,117:147-151.
  • 8孟庆平,戎咏华,徐祖耀.金属纳米晶的相稳定性[J].中国科学(E辑),2002,32(4):457-464. 被引量:12
  • 9Tebble R S,Craik D J. Magnetic Materials[M]. London:Wiley-Interscience, 1969.75.

二级参考文献27

  • 1[1]Buffat Ph, Borel J P. Size effect on the melting temperature of gold particles. Phys Rev A, 1976, 13: 2287 ~ 2297
  • 2[2]Cech R E, Turnbull D. Heterogeneous nucleation of the martensitic transformation. Trans AIME, 1956, 206: 124 ~ 132
  • 3[3]Kajiwara S, Ohno S, Honma K. Martensitic transformations in ultra-fine particles of metals and alloys. Phil Mag A, 1991, 63: 625 ~ 644
  • 4[4]Haneda K, Zhou Z X, Morrish A H, et al. Low-temperature stable nanometer-size fcc-Fe particles with no magnetic ordering. Phys Rev B, 1992, 46: 13832 ~ 13837
  • 5[5]Sato H, Kitakami O, Sakurai T, et al. Structure and magnetism of hcp-Co fine particles. J Appl Phys, 1997, 81: 1858 ~ 1862
  • 6[6]Kitakami O, Sato H, Shimada Y. Size effect on the crystal phase of cobalt fineparticles. Phys Rev B, 1997, 56: 13849 ~ 13854
  • 7[7]Tománek D, Mukherjee S, Bennemann K H. Simple theory for the electronic and atomic structure of small clusters. Phys Rev B, 1983, 28: 665 ~ 673
  • 8[8]Chatterjee P P, Pabi S K, Manna I. An allotropic transformation induced by mechanical alloying. J Appl Phys, 1999, 86: 5912 ~ 5914
  • 9[9]Zu X, Birringer R, Herr U, et al. X-ray diffraction studies of the structure nanometer-sized crystalline materials. Phys Rev B, 1987, 35: 9085 ~ 9090
  • 10[10]Thomas G J, Siegel R W, Eastman J A. Grain boundaries in nanophase palladium electron microscopy and image simulation. Scripta Metall, 1990, 24: 201 ~ 206

共引文献11

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部