期刊文献+

无线传感器网络在气体源预估定位中的应用 被引量:5

Application of Sensor Networks in Plume Source Position Estimation
下载PDF
导出
摘要 基于气体污染源浓度衰减模型,分别采用极大似然预估算法(M LE)、非线性最小二乘算法(NLS)对气体污染源定位进行了研究。仿真实验对比了两种算法在不同的传感器节点以及背景噪声情况下对预估定位误差的影响。结果表明:当环境背景噪声较小时,NLS可以得到比M LE算法更精确的预估结果。当环境背景噪声较大时,M LE算法比NLS算法有着更强的鲁棒性。 Based on the attenuation model of the plume, the location of plume source using maximum likelihood algorithm and the nonlinear least squares algorithm were studied. The effect of the estimation error, with different sensor number and different back ground noise, is researched by simulation. The result shows that better accuracy can be got by using nonlinear squares algorithm when the background noise is less. On the contrary, the maximum likelihood algorithm is robust to the much noise compared with the nonlinear squares algorithm.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期780-783,共4页 Journal of East China University of Science and Technology
关键词 无线传感器网络 源定位 极大似然 非线性最小二乘 WSN source localization maximum likelihood nonlinear least squares
  • 相关文献

参考文献5

  • 1Akyildiz L F,Weilian Su,Sankarasubramaniam Y,et al.A survey on sensor networks[J].IEEE Communications Magazine,2002,40(8):102-114.
  • 2He T,Huang C,Blum B M,et al.Range-free localization schemes for large scale sensor networks[A].Proceedings 9th Annual International Conference on Mobile Computing and Networking (Mobicom)[C].San Diego:MOBICOM,2003.81-95.
  • 3Zarzhitsky D,Spears D F,Spears W M.Distributed robotics approach to chemical plume tracing[A].Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C].Edmonton:IEEE/RSJ,2005.4034-4039.
  • 4Michaelides M P,Panayiotou C G.Plume source position estimation using sensor networks[A].Proceedings of the 13th Mediterranean Conference on Control an Automation[C].Limassol Cyprus:IEEE CNF,2005.731-736.
  • 5Sheng X,Hu Y.Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks[J].IEEE Transactions on Signal Processing,2005,53(1):44-53.

同被引文献44

  • 1孟庆浩,李飞.主动嗅觉研究现状[J].机器人,2006,28(1):89-96. 被引量:41
  • 2匡兴红,邵惠鹤.基于传感器网络的气体源定位方法研究[J].系统仿真学报,2007,19(7):1464-1467. 被引量:17
  • 3Murlis J. Mechanisms in Insect Olfaction. Oxford: Oxford University Press, 1986. 27-38
  • 4Ishida H, Hayashi K, Takakusaki M, Nakamoto T, Moriizumi T, Kanzaki R. Odour-source localization system mimicking behaviour of silkworm moth. Sensors and Actuators A: Physical, 1996, 51(2): 225-230
  • 5Lytridis C, Kadar E E, Virk G S. A systematic approach to the problem of odour source localization. Autonomous Robots, 2006, 20(3): 261-276
  • 6Russell R A. Tracking chemical plumes in constrained environments. Robotica, 2001, 19(4): 451-458
  • 7Farrell J A, Pang S, Li W. Chemical plume tracing via an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 2005, 30(2): 428-442
  • 8Vijayakumaran S, Levinbook Y, Wong T F. Maximum likelihood localization of a diffusive point source using binary observations. IEEE Transactions on Signal Processing, 2007, 55(2): 665-676
  • 9Ishida H, Suetsugu K, Nakamoto T, Moriizumi T. Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors. Sensors and Actuators A: Physical, 1994, 45(2): 153-157
  • 10Russell R A, Thiel D, Alan M S. Sensing odour trails for mobile robot navigation. In: Proceedings of IEEE International Conference on Robotics and Automation. San Diego, USA: IEEE, 1994. 2672-2677

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部