期刊文献+

G-凸空间中的广义对策和广义矢量拟平衡问题组 被引量:2

Generalized Game and System of Generalized Vector Quasi-equilibrium Problems in G-convex Spaces
下载PDF
导出
摘要 该文在广义G-凸空间中引入并研究了一类新的广义矢量拟平衡问题组(SGVQEP).利用作者的一族集值映象的极大元存在定理,证明了广义对策的一个新的平衡存在定理.作为应用,在非紧乘积G-凸空间中证明了SGVQEP解的一些新的存在定理. A new class of system of generalized vector quasi-equilibrium problems (SGVQEP) is introduced and studied in generalized convex spaces. By using an existence theorem of maximal elements for a family of set-valued mappings due to the author, a new equilibrium existence theorem for generalized games is proved. As applications, some new existence theorems of solutions for the SGVQEP are established in noncompact product G-convex spaces.
作者 丁协平
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第4期506-515,共10页 Acta Mathematica Scientia
基金 四川省教育厅重点科研基金项目(2003A081) SZD0406资助
关键词 极大元 广义对策 广义矢量拟平衡问题组 乘积G-凸空间. Maximal element Generalized game System of generalized vector quasi-equilibrium problems Product G-convex spaces.
  • 相关文献

参考文献3

二级参考文献57

  • 1丁协平.没有紧性,连续性和凹性的多准则对策的帕雷多平衡[J].应用数学和力学,1996,17(9):801-808. 被引量:7
  • 2Borglin A, Keiding H. Existence of equilibrium actions and of equilibrium :A note on the "new " existence theorems[J]. J Math Econom, 1976,3(2) :313-316.
  • 3Debreu G.A Social equilibrium existence theorem[J]. Proc Nat Actad 8ci U, SA, 1952,38(1) : 121-126.
  • 4Yannelis N C, Prabhakar N D. Existence of maximal elements and equilibria in linear topological spaces[J]. J Math Econom , 1983,12(2) :233-245.
  • 5Toussaint S. On the existence of equilibra in economies with infinite commodities and without ordered preferences[J]. J Econom Theory, 1984,33( 1 ) :98-115.
  • 6Tulcea C I.On the equilibriums of generalized games[R] .The Center for Math,Studies in Economics and Management Science,Paper No.696,1986.
  • 7Tulcea C I. On the approximation of upper semi-continuous correspondences and the equilibriums of generalized games [ J ]. J Math Arial Appl, 1988,136 (2) : 267-289.
  • 8Ding X P,Kim W K,Tan K K.Equilibria of noncompact generalized games with T^*.majorized preference correspondences[J]. J Math Arial Appl, 1992,162(3) :508-517.
  • 9Ding X P,Kim W K,Tan K K.Equilibria of generalized games with L -majorized correspondences[J].Internat J Math Math Sci, 1994,17(4) :783-790.
  • 10Ding X P, Tan K K. A minimax inequality with applications to existence of equilibrium point and fixed point theorems[J]. Colloq Math, 1992,63( 1 ) :233-247.

共引文献15

同被引文献35

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部