期刊文献+

分块自适应图像稀疏分解 被引量:2

Adaptive Block-based Image Sparse Decomposition
下载PDF
导出
摘要 针对图像稀疏分解的计算时间复杂度非常高这个问题,提出了分块自适应图像稀疏分解算法。该算法根据稀疏分解计算时间复杂度和待分解图像大小之间的关系,把待分解图像分成互不重叠的小块,然后对每个小块图像进行稀疏分解。根据每一块的复杂程度,自适应地决定稀疏分解的结束。实验结果表明,在分解原子个数相近或相同的条件下,新算法对稀疏分解后重建图像比在整幅图像上进行稀疏分解重建的图像质量下降0.5 dB,但计算速度提高了约15倍。 The computational burden in image sparse decomposition process is very huge. To deal with this problem, an adaptive block -based sparse decomposition algorithm is propesed. Based on the relation between computational burden and the image size, the new algorithm divides the whole image into small blocks which are not superpesed, then sparse decomposition of one image is transformed into sparse decomposition of small blocks of the original image. Experimental results show that with approximato number of atoms, the PSNR value of the image constructed by the new algorithm is degraded by about 0.5 dB, but the computing speed is improved by about 15 times, compared with the original whole image sparse decomposition method.
出处 《电讯技术》 2006年第4期63-67,共5页 Telecommunication Engineering
基金 四川省重点科技计划项目(04GG021-020-5 03GG006-005-2) 教育部留学回国人员科研启动基金资助项目(教外司[2004]527号)
关键词 图像处理 稀疏表示 稀疏分解 匹配追踪 image processing sparse representation sparse decomposition matching pursuit (MP)
  • 相关文献

参考文献13

  • 1Mallat S,Zhang Z.Matching pursuits withtime-frequency dictionaries[J].IEEE Trans.Signal Processing,1993,41(12):3397-3415.
  • 2Bergeau F,Mallat S.Matching pursuit of images[C]∥.Proceedings of IEEE-SP.USA:Piladephia,1994:330-333.
  • 3Coifman R,Wickerhauser M.Entropy-based algorithms for best basis selection[J].IEEE Trans.Information Theory,1992,38(2):1713-1716.
  • 4Chen S,Donoho D,Sauners M.Atom decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1999,20(1):33-61.
  • 5Daubechies I.Time -frequency localization operator:A geometric phase space approach[J].IEEE Trans.Information Theory,1988,34(4):605-612.
  • 6Olshausen B,Field D.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,381(6):607-609.
  • 7Olshausen B,Field D.Learning efficient linear codes for natural images:the roles of sparseness,overcompleteness,and statistical independence[C]∥.Proceedings of SPIE.1996,2657:132-138.
  • 8SESSION MA-S2 Redundant Representations for Visual Communications[C]∥.Proceedings of IEEE ICIP.Spain:Barcelona,2003:33-64.
  • 9邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报,2000,28(9):78-84. 被引量:135
  • 10Vandergheynst P,Frossard P.Efficient image representation by anisotropic refinement in matching pursuit[C]∥.Proceedings of IEEE on ICASSP.USA:Salt Lake City,2001:1757-1760.

二级参考文献19

共引文献145

同被引文献18

  • 1尹忠科,王建英,Pierre Vandergheynst.一种新的图像稀疏分解快速算法[J].计算机应用,2004,24(10):92-93. 被引量:14
  • 2张良,刘宏,吴仁彪,杨国庆.JPEG2000小波域隐写算法[J].信号处理,2007,23(1):27-30. 被引量:4
  • 3Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Trans. Signal Processing, 1993,41 ( 12 ) : 3397 - 3415.
  • 4Ventura R,V Anderheynst P, Frp Ssard P. Low-Rate and Flexible Image Coding With Redundant Representations[ J]. IEEE Trans on image processing,2006,15 ( 3 ) : 726 - 739.
  • 5Ebrahimi A, Shirani SH. Matching Pursuit-Based Region-of-Interest Image Coding[ J ]. IEEE Trans on image processing,2007,16 (2) : 406 - 415.
  • 6Vandergheynst P, Frossard P. Efficient image representation by aniso- tropic refinement in matching pursuit [ A ]. In : Proceedings of IEEE on ICASSP[ C]. Salt Lake City,UT,USA,2001,3 :1757 - 1760.
  • 7M. Elad, M. Aharon. Image denoising via sparse and re- dundant representations over learned dictionaries [ J ]. IEEE Transactions on Image Processing, 2006,15 ( 12 ) : 3736-3745.
  • 8S. G. Mallat, Z. Zhang. Matching pursuits with time-fre- quency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.
  • 9R. R. Coifman, M. V. Wickerhauser. Entropy-based algo- rithms for best basis selection, IEEE Transactions on In- formation Theory, 1992,38 ( 2 ) :713-718.
  • 10S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit[J] SIAM journal on scien- tific computing, 1999,20( 1 ) :33-61.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部