期刊文献+

随机激励时多介质耦合型减振器求解的一种近似方法 被引量:2

APPROXIMATE SOLUTION OF A MULTI-MEDIUM COUPLING NONLINEAR ISOLATOR UNDER RANDOM VIBRATION EXCITATION
下载PDF
导出
摘要 有关文献结合流体、橡胶、非线性弹性元件设计了一种多介质耦合减振器,获得较好的工作特性;在此基础上基于衰减随机振动的工程应用要求,提出了一种多介质耦合型非线性减振器的数学模型,该模型考虑了平方阻尼、线性阻尼、库伦阻尼及非线性弹性元件的耦合,在外部激励为随机振动激励时,通过FPK变换并结合等效原理对模型进行了理论上近似求解,具体讨论了非线性特性参数变化引起的系统特性变化,为进一步研究奠定了基础。 A new type of isolator with multi-types of damping and nonlinear stiffness through oil, air, rubber and spring coupling by ingenious tactics is presented in references. In this paper, a mathematical model of a multi-medium coupling isolator is developed for attenuating wide-band random vibration for practical applications. The model considers the coupling of quadratic damping, viscosity damping, coulomb damping and nonlinear spring. The approximate theoretical calculating formulae are deduced by combining FPK transform and equivalent principle method. By conducting parametric analysis, it is shown that changes in the nonlinear characteristic parameters would induce changes in the system characteristics. The solution establishes a theoretical basis for further research.
作者 杨平
出处 《工程力学》 EI CSCD 北大核心 2006年第7期170-175,共6页 Engineering Mechanics
基金 国防预研基金(00J16.2.5.DZ0502) 广西自然科学基金(0339037 0141042) 广西中青年学科带头人基金 江苏大学人才基金(04JDG027) 江苏大学自然科学创新预研基金资助
关键词 多介质耦合减振器 随机振动激励 非线性动态特性 模型 近似求解 multi-medium coupling isolator random vibration nonlinear dynamic characteristics mathematical model approximate solution
  • 相关文献

参考文献13

  • 1朱位秋.随机振动[M].北京:科学出版社,1998..
  • 2庄表中,陈乃立.随机振动的理论及应用[M].北京:地震出版社,1985.
  • 3Harris C M,Crede C E.Shock and vibration handbook[M].MC-Graw-Hill,1990.
  • 4Chandra N,Shekhar,Hatwal H.Response of non-linear dissipative shock isolators[J].J.of Sound and Vibration,1998,214(4):589~603.
  • 5Dunne J F.Extreme-value prediction for non-linear stochastic oscillators via numerical solutions of the stationary FPK equation[J].Journal of Sound and Vibration,1997,206(5):697~724.
  • 6Liu X B,Liew K M.The Lyapunov exponent for a codimension two bifurcation system that is driven by a real noise[J].International Journal of Non-Linear Mechanics,2003,38(10); 1495~1511.
  • 7Ni Y Q,Ying Z G,Ko J M,Zhu W Q.Random response of integrable Duhem hysteretic systems under non-white excitation[J].International Journal of Non-Linear Mechanics,2002,37(8):1407~1419.
  • 8Ulyanov S V,Feng M.Stochastic analy sis of time-variant nonlinear dynamic systems.Part 1:The Fokker-PlanckKolmogorov equation approach in stochastic mechanics[J].Probabilistic Engineering Mechanics,1998,13(3):183~203.
  • 9Er Guo-Kang.Exponential closure method for some randomly excited non-linear systems[J].International Journal of Non-Linear Mechanics,2000,35(1):69~78.
  • 10Banik A K,Datta T K.Stochastic response and stability analysis of single leg articulated tower[C].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,2003,2:21~28.

二级参考文献8

  • 1[1]Harris C M, Crede C E. Shock and Vibration Handbook. New York:MC-Graw-Hill,1990
  • 2[2]Raindra B, Mallik A K. Hard Duffing-type vibration isolator with combined coulomb and viscous damping. Int. J. Non-linear Mechanics, 1993, 28(4):427~440
  • 3[3]Chandra N, Shekhar, Hatwal H. Response of non-linear dissipative shock isolators. J. of Sound and Vibration 1998, 214(4):589~603
  • 4[6]Audenino A L, Belingardi G. Modeling the dynamic behaviour of motorcycle damper. Proc. Instn. Mech.Engrs. Part D:J. of Automobile Engineering,1995, 209(2):249~262
  • 5[7]Cafferty S, Worden K,Tomlinson G. Characterization of automotive shock absorbers using random excitation. Proc. Instn. Mech.Engrs. Part D:J. of Automobile Engineering,1995, 209(2 ):239~247
  • 6[8]Surace C, Worden K, Tomlinson G. On the non-linear characteristics of automotive shock absorbers. Proc. Instn. Mech.Engrs. Part D:J. of Automobile Engineering,1995,206(1):3~16
  • 7[9]Wallascbek J. Dynamics of nonlinear automotive shock absorbers. Int. J. Non-linear Mechanics, 1990, 25(2): 299~308
  • 8杨平.确定性激励时多介质藕合型非线性隔振器近似求解[J].桂林电子工业学院学报,2000,20(4):87-91. 被引量:11

共引文献78

同被引文献14

  • 1陈昌亚,王本利,王德禹,张建刚.随振动量级增加卫星结构频率下移的分析[J].上海航天,2004,21(3):44-47. 被引量:9
  • 2朱位秋.非线性随机振动理论的近期进展[J].力学进展,1994,24(2):163-172. 被引量:18
  • 3Michael Feldoman. Nonlinear system vibration analysis using hilbert transform-II. Forced vibration analysis method 'Forcevib' [J]. Mechanical Systems and Singal Processing, 1994, 8(3): 309-318.
  • 4Gaetan Kerschen. Past, present and future of nonlinear system identification in strucural dynamics [J]. Mechanical Systems and Singal Processing, 2006, 20: 505-592.
  • 5Worden K, Tomlinson G R. Nonlinearity in structural dynamics: Detection, identification and modelling [M]. Insitute of Physics Publishing, 2001.
  • 6Dunne J F, Ghanbari M. Extreme-value prediction for nonlinear stochastic oscillators via numerical solutions of the stationary FPK equation [J]. Journal of Sound and Vibrarion, 1997, 206(5): 697-724.
  • 7Wang Rubin, Kiminhiko Yasuda, Zhang Zhikang. A generalized analysis technique of the stationary FPK equation in nonlinear systems under gaussian white noise excitations [J]. International Journal of Engineering Science, 2000, 38: 1315- 1330.
  • 8Yang Ping. Experimental and mathematical evaluation of dynamic behaviour od an oil-air coupling shock absorber [J]. Mechanical Systems and Signal Processing, 2003: 17(6): 1367- 1379.
  • 9朱位秋.随机振动[M].北京:科学出版社,1998..
  • 10Smith K S.Modal test of the Cassini spacecraft,1997.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部