期刊文献+

钒注入4H-SiC半绝缘特性的研究 被引量:1

Characteristics of Semi-Insulating 4H-SiC Layers by Vanadium Ion Implantation
下载PDF
导出
摘要 研究了2100keV高能量钒注入4H-SiC制备半绝缘层的方法和特性,注入层的浓度分布用蒙特卡罗分析软件TRIM进行模拟.采用一种台面结构进行I-V测试,发现钒注入层的电阻率与4H-SiC层的初始导电类型有很大关系.常温下,钒注入p型和n型4H-SiC的电阻率分别为1.6×10^10和7.6×10^6Ω·cm.测量了不同退火温度下的电阻率,发现高温退火有利于钒的替位激活和提高电阻率,由于钒扩散的影响1700℃退火使得电阻率略有下降.测量了n型SiC钒注入层在20~140℃时的电阻率,计算出钒受主能级在4H-SiC中的激活能为0.78eV. Vanadium ion (V^+) implantation at a high energy (2100keV) is successfully used to form semi-insulating layers in 4H-SiC. The fabrication processes and measurements of the implanted layer are reported in detail. The profile of the ion implantation is simulated with the Monte Carlo simulator TRIM. Test patterns on semi-insulating 4H-SiC samples are processed into a mesa structure, and resistivity measurements are conducted. The resistivities of V^* -implanted layers are strongly dependent on the conduction type of the initial 4H-SiC samples,and they are about 1.6×10^10 and 7.6×10^6Ω·cm respectively for p- and n-type samples at room temperature. The resistivities of the as-implanted samples increase with increasing annealing temperature for both p- and n-type samples due to the introduction of compensating levels. However, they decrease slightly beyond 1700℃ due to the diffusion of vanadium. The temperature dependent resistivity behavior in V^+ -implanted n- type 4H-SiC indicates an activation energy of 0.78eV.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第8期1396-1400,共5页 半导体学报(英文版)
基金 国家自然科学基金(批准号:60376001) 国家重点基础研究发展规划(批准号:2002CB311904) 国防基础研究计划(批准号:51327020202)资助项目~~
关键词 碳化硅 半绝缘 钒离子注入 退火 激活能 SiC semi-insulating vanadium ion implantation annealing activation energy
  • 相关文献

参考文献14

  • 1Yang Linan,Zhang Yimen,Yu Chunli.A compact model describing the effect of p-buffer layer on the I-V characteristics of 4H-SiC power MESFETs.Solid-State Electron,2005,49:517
  • 2陈治明.碳化硅电力电子器件及其制造工艺新进展[J].Journal of Semiconductors,2002,23(7):673-680. 被引量:15
  • 3White J C,Harris G L,Poker D B.Semi-insulating layers in 4H and 6H SiC by Si and C ion implantation.Electron Lett,2002,38(24):1597
  • 4Nadella R K,Capano M A.High-resistance layers in n-type 4H-silicon carbide by hydrogen ion implantation.Appl Phys Lett,1997,70(7):886
  • 5Mitchel W C,Perrin R,Goldstein J,et al.Fermi level control and deep levels in semi-insulating 4H-SiC.J Appl Phys,1999,86(9):5040
  • 6Jenny J R,Skowronski J,Mitchel W C,et al.Deep level transient spectroscopic and Hall effect investigation of the position of the vanadium acceptor level in 4H and 6H SiC.Appl Phys Lett,1996,68(14):1963
  • 7Mitchel W C,Mitchell W D,Zvanut M E,et al.High temperature Hall effect measurements of semi-insulating 4H-SiC substrates.Solid-State Electron,2004,48:1693
  • 8Kimoto T,Nakajima T,Matsunami H,et al.Formation of semi-insulating 6H-SiC layers by vanadium ion implantations.Appl Phys Lett,1996,69(8):1113
  • 9Devanathan R,Weber W J.Displacement energy surface in 3C and 6H SiC.Journal of Nuclear Materials,2000,278:258
  • 10Ishimaru M,Sickafus K E.Dose dependence of microstructural evolution in oxygen-ion-implanted silicon carbide.Appl Phys Lett,1999,75(10):1392

二级参考文献58

  • 1[1]Baliga B J,et al.IEEE Electron Device Lett,198 1,EDL-2:162
  • 2[2]Palmour J W,et al.Physica B,1993,185:461
  • 3[3]Krotz G,et al.Proc IEEE ISIE'98,Pretoria,South Africa,1998:732
  • 4[4]http:∥www.cree.com;http:∥www.Infineon.com
  • 5[5]Jonhson C M,et al.IEE Proc Circuits Devices Syst,2001,148( 2):101
  • 6[6]Baliga B J.Proc MRS Symp,1998,512:77
  • 7[7]Marrison D J,et al.Materials Science Forum,2000,338~342: 1199
  • 8[8]Iwami M,et al.Materials Science Forum,2000,338~342:419
  • 9[9]Bhatnagar M,Baliga B J.IEEE Electron Device Lett,1992,EDL -13:501
  • 10[10]Alok D,Baliga B J.IEEE Electron Device Lett,1994,EDL-15:394

共引文献14

同被引文献15

  • 1刘芳,张玉明,张义门,郭辉.离子注入制备n型SiC欧姆接触的工艺研究[J].半导体技术,2005,30(4):24-28. 被引量:2
  • 2宋马成.化合物半导体的离子注入隔离技术[J].半导体情报,1990(1):15-28. 被引量:2
  • 3V. Khemka,R. Patel,N. Ramungul,T. P. Chow,M. Ghezzo,J. Kretchmer.Characterization of phosphorus implantation in 4H-SiC[J]. Journal of Electronic Materials . 1999 (3)
  • 4T. Kimoto,O. Takemura,H. Matsunami,T. Nakata,M. Inoue.Al+ and B+ implantations into 6H-SiC epilayers and application to pn junction diodes[J]. Journal of Electronic Materials . 1998 (4)
  • 5M. A. Capano,S. Ryu,M. R. Melloch,J. A. Cooper,M. R. Buss.Dopant activation and surface morphology of ion implanted 4H- and 6H-silicon carbide[J]. Journal of Electronic Materials . 1998 (4)
  • 6ITOH A,KI MOTO T,MATSUNAMI H.High perfor-mance of high voltage4H-SiC Schottky barrier diodes. IEEE Electron Device Letters . 1995
  • 7ALOK D,BALIGA B J.SiC device edge termination. IEEE Transactions on Education . 1997
  • 8Itoh A,Kimoto T,Matsunami H.Excellent Reverse Blocking Characteristics of High-Voltage 4H-SiC Schottky Rectifiers With BoronImplanted Edge Termination. IEEE Electron Device Letters . 1996
  • 9Seshadri S,Eldridge G W,Agarwal A K.Comparison of the annealing behavior of high-dose nitrogen-, aluminum-, and boron-implanted 4H-SiC. Applied Physics Letters . 1998
  • 10Handy E M,Rao M V,Jones K A.Effectiveness of AlN encapsulant in annealing ion-implanted SiC. Journal of Applied Physics . 1999

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部