期刊文献+

基于小波方法的数据流查询计算研究与应用

Query Computation on Data Streams Using Wavelet Method
下载PDF
导出
摘要 许多领域中大量应用所产生的数据流的处理已成为聚集数据处理的一个重要方面。文章在对数据流查询计算进行深入研究的基础上,分析了该情形下聚集查询语言与重写的特征,给出了一类有效的快速查询计算模型。该计算模型的核心是运用小波分析方法,通过建立有效的小波提纲来提高查询处理的效率。最后,在实际应用环境下对所给出的模型进行了应用分析。 Manipulating data streams which exist in large scale communication systems and Internet application becomes a very important field of aggregate computing.Fast query and analysis are often required in order to process the data streams.In this paper,we first investigate the features of the relation between aggregate query language and aggregate query rewriting.Secondly,we present an efficient fast query computational model,in which equivalent subset synopsis is designed based on wavelet approach.Finally,by deploying an implementation of the fast query model in a large scale system,we test and verify the result.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第23期158-160,175,共4页 Computer Engineering and Applications
基金 北京市优秀人才专项资助项目(编号:20042D0500701) 北京市教委科技发展面上项目(编号:KM200510772006)
关键词 快速计算模型 数据流查询 聚集计算 小波方法 computing model,data stream query,aggregate operation,wavelet method
  • 相关文献

参考文献12

  • 1S Grumbach,M Rafanelli,L Tininini.Querying Aggregate Data[C].In:Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database System,New York,NY,USA:ACM,1999:174~184
  • 2S Grumbach,L Tininini.On the content of materialized aggregate views[C].In:Proceedings of the Nineteenth ACM SIGACT-SIGMODSIGART Symposium on Principles of Database System,New York,NY,USA:ACM,2000:47~57
  • 3S Cohen,W Nutt,A Serebrenik.Algorithms for Rewriting Aggregate Queries Using Views[C].In:Proc Symposium on Advances in Databases and Information Systems,Prague,Czech Republic:ADBIS-DASFAA,2000:65 ~78
  • 4S Abiteboul,O M Duschka.Complexity of Answering Queries Using Materialized Views[C].In:Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database System,New York,NY,USA:ACM,1998:254~263
  • 5S Chaudhuri,G Das,V Narasayya.A Robust,Optimization-Based Approach for Approximate Answering of Aggregate Queries[M].New York,NY,USA:ACM SIGMOD,2001:295~306
  • 6N Alon,Y Matias,M Szegedy.The space complexity of approximating the frequency moments[J].Journal of Computer and System Sciences,1999;58(1):137~147
  • 7G Cormode,P Indyk,N Koudas et al.Fast mining of tabular data via approximate distance computations[C].In:IEEE ICDE,San Jose,California,USA:IEEE,2002:605~616
  • 8C Aggarwal,J Han,J Wang et al.A framework for clustering evolving data streams.In VLDB 2003
  • 9Daniel Kifer,Shai Ben-David,Johannes Gehrke.Detecting Chang in Data Stream.Toronto,Canada,In VLDB 2004
  • 10Sven Schmidt,Henrike Berthold,Wolfgang Lehner.Qstream:Deterministic Querying of Data Streams.Toronto,Canada,In VLDB 2004

二级参考文献8

  • 1Arasu A,Widom J.Resource sharing in continuous sliding-window aggregates.In:Nascimento MA,(O)zsu MT,Kossmann D,Miller RJ,Blakeley JA,Schiefer KB,eds.Proc.of the 30th Int'l Conf.on Very Large Data Bases.Toronto:Morgan Kaufmann Publishers,2004.336-347.
  • 2Motwani R,Widom J,Arasu A,Babcock B,Babu S,Datar M,Manku G,Olston C,Rosenstein J,Varma R.Query processing,resource management,and approximation in a data stream management system.In:Stonebraker M,Gray J,Dewitt D,eds.Proc.of the 1st Biennial Conf.on Innovative Data Systems Research.Asilomar:Online Proceedings,2003.245-256.
  • 3Carney D,Cetintemel U,Cherniack M,Convey C,Lee S,Seidman G,Stonebraker M,Tatbul N,Zdonik S.Monitoring streams-a new class of data management applications.In:Lochovsky FH,Wang S,Papadias D,eds.Proc.of the 28th Int'l Conf.on Very Large Data Bases.Hong Kong:Morgan Kaufmann Publishers,2002.215-226.
  • 4Madden S,Shah M,Hellerstein JM,Raman V.Continuously adaptive continuous queries over streams.In:Franklin MJ,Moon B,Ailamaki A,eds.Proc.of the 2002 ACM SIGMOD Int'l Conf.on Management of Data.Madison:ACM,2002.49-60.
  • 5Babcock AK,Babu S,Datar M.Model and issues in data stream systems.In:Popa L,ed.Proc.of the 21st ACM SIGACT-SIGMOD-SIGART Symp.on Principles of Database Systems.Madison:ACM,2002.1-16.
  • 6Kang J,Naughton JF,Viglas SD.Evaluating window joins over unbounded streams.In:Dayal U,Ramamritham K,Vijayaraman TM,eds.Proc.of the 19th Int'l Conf.on Data Engineering.Bangalore:IEEE Computer Society,2003.341-352.
  • 7Golab L,Ozsu MT.Processing sliding window multi-joins in continuous queries over data streams.In:Freytag JC,Lockemann PC,Abiteboul S,Carey MJ,Selinger PG,Heuer A,eds.Int'l Conf.on Very Large Data Bases.Berlin:Morgan Kaufmann Publishers,2003.500-511.
  • 8Viglas S,Naughton J,Burger J.Maximizing the output rate of multi-join queries over streaming information sources.In:Freytag JC,Lockemann PC,Abiteboul S,Carey MJ,Selinger PG,Heuer A,eds.Int'l Conf.on Very Large Data Bases.Berlin:Morgan Kaufmann Publishers,2003.285-296.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部