期刊文献+

一般随机变量序列强大数定律

The Strong Law of Large Numbers for the Generalized Random Variable Sequences
下载PDF
导出
摘要 将独立同分布情形下的强大数定律进行了推广,指出一般随机变量序列若满足∑∞n=1B2n/n<∞,则服从强大数定律。所给出随机变量序列强大数定律存在条件较易满足,使得定理适用范围更广。并在两两不相关且一致有界的条件下,指出对任意的α>3/4,均有(Sn-ESn)/nα几乎处处收敛于0。 The strong law of large numbers for the random variable sequences, which are not necessarily independent and identically distributed, is investigated in this paper. We propose that the generalized random variable sequences satisfying the condition ∞∑n=1B^n2/n〈∞ follows the strong law of large numbers. Since the given condition is easy to be satisfied, the theorem can be applied more widely. Under the conditions of irrelevance and uniform bounded we strengthen the conclusion, and put forward that (Sn- ESn)/n^a almost surely convergent to 0 for every 3/4.
出处 《太原理工大学学报》 CAS 北大核心 2006年第4期495-497,共3页 Journal of Taiyuan University of Technology
关键词 随机变量 强大数定律 几乎处处收敛 random variable sequences strong law of large numbers almost surely convergent
  • 相关文献

参考文献3

二级参考文献4

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部