期刊文献+

庆深油田神经网络法优选钻头研究 被引量:2

Research on optimizing bit by neural network in Qingshen Oilfield
下载PDF
导出
摘要 利用人工神经网络法中的自适应共振理论进行石油工业中优选钻头类型的研究、为了改善钻头工作性能,在提高钻速的同时,还要注意钻头在井下的可靠性,认真进行钻头优选研究非常必要,这将会大幅度降低石油钻井成本.人工神经网络理论为钻头优选提供了一种有效的方法、文章应用自适应共振人工神经理论来提高石油钻井中钻头类型选择的可靠性,分析了自适应共振神经网络的结构并给出了计算步骤,建立了钻头优选模型.该理论在庆深油田徐深10井进行了实验,结果表明:实验井的平均机械钻速比以前提高20%,单只钻头进尺提高37.4%.提高深井钻井速度的效果明显,该优选钻头方法切实可行. Adaptive resonance theory is applied to optimize bit type in petroleum industry. It is greatly demanded to increase drilling speed in petroleum exploration and development. To increase drilling speed with good reliability, bit type needs to be chosen carefully for drilling performance. Good bit optimization is important for decreasing petroleum industry cost. In bit optimization, there are many related factors, which need to be analyzed comprehensively. Neural networks are helpful tools to improve bit optimization. Bit optimization method is developed by adaptive resonance theory to improve the reliability. The network structure is analyzed and the steps of the model are given. The model of optimizing bit type is used in deep well Xushen 10 of Qingshen Oilfield. It shows that the average drilling rate is 20% faster than former wells at the same depth, and the drilling footage of the single bit is 37.4% higher than former wells. The drilling rate is obviously increased, and this method is confirmed to be practicable.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期111-114,共4页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金(E200502).
关键词 钻井 ART神经网络 钻头优选 庆深油田 drilling ART neural network bit optimization Qingshen Oilfield
  • 相关文献

参考文献12

  • 1于润桥.用“综合指数”方法选择钻头类型[J].石油钻探技术,1993,21(3):46-50. 被引量:8
  • 2张书瑞,徐少敏,翟阳.大庆长垣东部地区中深井钻头系列的评选[J].石油钻探技术,1995,23(1):8-10. 被引量:6
  • 3冯定.神经网络在钻头选型中的应用研究[J].石油钻探技术,1998,26(1):43-45. 被引量:14
  • 4陈亚秋,陈德钊,胡上序,吕蓁,王丽君.多层前传神经网的广义误差反传训练与模式分类[J].模式识别与人工智能,1996,9(2):161-165. 被引量:9
  • 5胡守仁.神经网络应用技术[M].国防科技大学出版社,1997..
  • 6CHEN Ming,GHORBAN A A,VIENDRAKUMAR C.Bhavsar.incremental communication for adaptive resonance theory networks[J].IEEE Transactions on Neural Networks,2005,16(1):132-144.
  • 7PACELLA M,SEMERARO Q,ANGLANI A.Adaptive resonance theory-based neural algorithms for manufacturing process quality control[J].International Journal of Production Research,2004,42(21):4581-4607.
  • 8CAO Yongqiang,WU Jianhong.The foundation of part algorithm[J].IEEE Transactions on Neural Networks,2004,15(2):245-260.
  • 9PHAM D T,CHAN A B.Unsupervised adaptive resonance theory neural networks for control chart pattern recognition.proceedings of the Institution of mechanical engineers[J].Part B Engineering Manufacture,2001,215(1):59-67.
  • 10JONES M.Personalization and adaptive resonance theory[J].Software Tools for the Professional Programmer,2002,27(10):36-39.

二级参考文献4

共引文献25

同被引文献18

引证文献2

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部