期刊文献+

基于胸部CT图象的肺区自动分割 被引量:4

Automated Segmentation of Lung Fields from Thoracic CT
下载PDF
导出
摘要 肺区自动分割是肺部肿瘤计算机辅助诊断系统的关键之一。文章采用多阈值和区域生长方法,先去掉背景,再去掉气管/支气管,最后对提取出来的肺区使用滚球的方法进行修补。该方法速度快、人工干预少、准确。 Automated segmentation of lung is one of key techniques in computer aided diagnosis systems to detect lung tumor.This article uses the multi-criterion segmentation algorithm and region growth algorithm to get rid of the background and the trachea and main bronchi at first.Then the lung fields are gained and repaired with falling-ball method,The method has high speed,little manual intervention and nicety.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第24期226-228,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60371024)
关键词 CT图象 肺区分割 多阈值 区域生长 CT image,lung segmentation, muhi-thresholding, region growth
  • 相关文献

参考文献6

二级参考文献21

  • 1[1]Zhao Bin-sheng, David Yankelevitz. Two-dimensional multicriterion segmentation of pulmonary nodules on helical CT images[J]. Medical Physics, 1999,26(6) :889~895.
  • 2[2]Ashton E A, Berg M J, Parker K J. Segmentation and feature extration techniques, with applications to MRI head studies[J].Magnetic Resonance Medicine, 1995,33(5) :670~677.
  • 3[3]McInerney T, Terzopoulos D, Medical image segmentation using topologically adaptable snakes [A]. In: Proceedings First International Conference on Computer Vision, Virtual Reality,and Robotics in Medicine (CVRMed'95)[C], Nice, France,1995,905:92~101.
  • 4[4]Vincent Caselles, Ron Kimmel. Minimal surfaces based object segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(4): 201~209.
  • 5[5]Rafael Wiemkera, Andre Zwartkruisb. Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT[A]. In: Proceedings of International Conference Computer Assisted Radiology and Surgery (CARS'01) [C], Berlin,Germany, June 2001:611~616.
  • 6[6]Lee Chien-cheng, Chung Pau-choo, Recognizing abdominal organs in CT images using contextual Neural Network and Fuzzy rules [A]. In: Proceedings of the 22 Annual Engineering of Medicine and Biology Society International Conference [C],Chicago Illinois USA, 2000:1745 ~ 1748.
  • 7[7]Koss J E, Newman F D. Abdominal organ segmentation using texture transforms and Hopfield Neural Network [J]. IEEE Transactions on Medical Imaging, 1999,18(7): 640~648 .
  • 8[8]Kung S Y, Hu Y H. A Frobennius approximation reduction method for determining optimal number of hidden units[A]. In:Proceedings of Internatioanal Joint Conference on Neural Networks [C], Seattle,WA, USA, 1991.
  • 9Li L,Pattern Recognition,1997年,30卷,5期,743页
  • 10Yen Juicheng,IEEE Trans Image Processing,1995年,4卷,3期,370页

共引文献65

同被引文献31

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部