期刊文献+

基于经验模态分解的目标特征提取与选择 被引量:14

Improving Feature Extraction of Ship-Radiated Target Signals with Empirical Mode Decomposition(EMD) and Hilbert Spectrum
下载PDF
导出
摘要 经验模态分解(EMD)是一种新的非平稳时变信号处理方法,可以自适应地将信号的局部特征逐级分解出来。提出了基于EMD的舰船噪声特征提取与选择方法,将本征模态函数(IM F)分量及其瞬时频率作为特征,并选择其判别熵作为特征向量的可分性度量。数值仿真和实际噪声数据处理的结果表明IM F分量和频率可以充分体现目标的特征,具有良好的类别可分性。 Purpose. Ref. 2 pointed out that wavelet transform can not self-adaptively perform feature extraction of non-stationary and time-varying signals. The EMD and Hilbert spectrum method proposed by Huang can self-adaptively deal with such signals. We are interested in Ref. 3's method because we have long engaged in feature extraction of non-stationary and time varying signals radiated from target ships. In the full paper, we explain in detail how to use EMD and Hilbert spectrum; in this abstract we just list the three topics of explanation: (A) brief introduction to EMD and Hilbert spectrum, in which IMFs (Intrinsic Mode Functions) are explained; (B) feature extraction and analysis of target signals based on EMD and Hilbert spectrum; under this topic, esq. (7) through (10) in the full paper are derived ; (C) extraction of three types of real signals of target ships; the results are summarized in Table 1 of the full paper. The results in Table 2 indicate that IMFs are effective feature vectors for classification.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2006年第4期453-456,共4页 Journal of Northwestern Polytechnical University
关键词 经验模态分解 特征提取与选择 目标分类 Empirical Mode Decomposition (EMD), Hilbert spectrum, feature extraction, classification
  • 相关文献

参考文献5

二级参考文献10

  • 1R R Coifman, M V W Hauser. Entropy based algorithms for best basis selection [J]. IEEE Trans, 1992, IT-38(3) :713 - 718.
  • 2G Antonini, A Orlandi. Wavelet packet-based EMI signal processing and source identification [ J ]. IEEE Trans, 2001, EC-43 ( 2 ) : 140 -148.
  • 3H Liang, I Hartimo. A feature extraction algorithm based on wavelet packet decompo, sition for heart sound signals [ A ]. Proc of IEEE-SP Inter. Symp [ C ]. USA: IEEE, 1998.93 - 96.
  • 4N Satio, R Coifman. On local orthonormal bases for classification and regression [ A]. Prec Qf IEEE ICASSP [ C]. USA: IEEE, 1995.1529 -1532.
  • 5N Satio, R Coifman. Local discriminant bases and their applications[J]. Mathematical Imaging and Vision, 1995,5(4) :337 - 358.
  • 6R Samkaya,J H L Hansen. High resolution speech feature parameterization for monophone-based stressed speech recognition [J]. IEEE SP Letters.2000,7(7) : 182 - 185.
  • 7Ling Jing,Qu Liangsheng.Feature Extraction Bas-ed on Morlet Wavelet and Its Application for Mechanical Fault Diagnosis. Journal of Sound and Vibration, 2000,234(1):135-148
  • 8Peter W T, Peng Y H, Richard Y. Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis-Their Effectives and Flexibilities. Journal of Vibration and Acoustics, 2000, 123(3): 303-310
  • 9Huang N E, Shen Z, Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A, 1998, 454(12): 903-995
  • 10钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究[J].振动工程学报,2002,15(2):233-238. 被引量:128

共引文献97

同被引文献106

引证文献14

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部