期刊文献+

一种时间序列表示算法及其在聚类中的应用 被引量:2

Efficient representation for time series with applications in clustering
下载PDF
导出
摘要 时间序列数据量远远大于普通数据库的特点,导致一些通用的数据挖掘工具直接应用于时间序列效果很不理想。为此提出了一种时间序列分段线性化表示算法,这种表示方法将大大提高相似性测量的计算速度。在分段线性化表示的基础上提出了一种相似性计算方法,该方法对于时间序列的多种变形都不敏感。将k-平均(k-mean)聚类算法应用于分段线性化表示的时间序列,聚类结果表明算法非常有效。 The time series database is the great database, generally. Therefore, a new representation of time series is presented, which allows efficient computation of the similar measure. And a method of the similar measure is presented, which is designed to be insensitive to the majority transformation. The k-mean cluster is used for the clustering of the time series. The results show the efficiency of the algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第8期1266-1269,共4页 Systems Engineering and Electronics
关键词 时间序列 相似性 数据挖掘 time series similarity data mining
  • 相关文献

参考文献6

  • 1康卓,黄竞伟,李艳,康立山.复杂系统数据挖掘的多尺度混合算法[J].软件学报,2003,14(7):1229-1237. 被引量:18
  • 2Wu Y,Agrawal D,El Abbadi A.A comparison of DFT and DWT based similarity search in time series databases[C]∥ Proc.of the 9th ACM CIKM Int'l Conf.on Information and Knowledge Management,2000:488-495.
  • 3郑斌祥,杜秀华,席裕庚.时序数据相似性挖掘算法研究[J].信息与控制,2002,31(3):264-267. 被引量:5
  • 4Keogh E,Pazzani M.An enhanced representation of time series which allows fast and accurate classification,clustering and relevance feedback[C]∥ Proc.of the 4th Int'l Conference on Knowledge Discovery and Data Mining.New York,NY,1998:239-241.
  • 5C Perng,H Wang,S Zhang,et al.Landmarks:a new model for similarity-based pattern querying in time series databases[J] IEEE Conf.on Data Engineering,2000:33-44.
  • 6姜宁,史忠植.文本聚类中的贝叶斯后验模型选择方法[J].计算机研究与发展,2002,39(5):580-587. 被引量:21

二级参考文献26

  • 1[1]H H Bock.Probabilistic models in cluster analysis.Computational Statistics & Data Analysis,1996,23:5~28
  • 2[2]Chris Fraley,Adrian E Raftery.Model-based clustering,discriminate analysis,and density estimation.Department of Statistics,University of Washington,Tech Rep:380,2000
  • 3[3]Petri T Kontkanen,Petri J Myllymaki,Henry R Tirri.Comparing Bayesian model class selection criteria by discrete finite mixtures.In:D L Dowl,K B Korb,J J Oliver eds.Information,Statistics and Induction in Science (Proc of the ISIS'96 Conf in Melbourne.Australia,1996).Singapore:World Scientific,1996.364~374
  • 4[4]An Introduction to Cluster Analysis for Data Mining.http://www.cs.umn.edu/classes/Spring-2000/csci5980-dm/cluster-survey.pdf
  • 5[5]高等数理统计.超星数字图书馆.http://www.ssreader.com.cn.442~444(Advanced Mathematical Statistics (in Chinese),Superstar Digital Library.http://www.ssreader.com.cn.442~444)
  • 6[6]Jeff A Bilmes.A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models.Computer Science Division Department of Electrical Engineering and Computer Science,U C Berkeley,Tech Rep:TR-97-021,1998
  • 7[7]R E Kass,A E Raftery.Bayesian factors and model uncertainly.Department of Statistics,Carnegie-Mellon University,Tech Rep:571,1993
  • 8[8]I J Good.Weight of evidence:A brief survey.In:J M Bernade ed.Bayesian Statistics 2.New York:Elsevier,1985.249~269
  • 9[9]贝叶斯统计推断.超星数字图书馆.http://www.ssreader.com.cn(Bayesian Inferential Statistics (in Chinese).Superstar Digital Library.http://www.ssreader.com.cn)
  • 10[10]P Cheeseman,J Stutz.Bayesian Classification (AutoClass):Theory and results.In:U M Tayyad ed.Knowledge Discovery in Data Bases II.AAAI Press /The MIT Press,1995.153~180

共引文献41

同被引文献40

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部